单元化二硫化钼晶体管的亚纳米等效氧化厚度和阈值电压控制

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jung-Soo Ko, Sol Lee, Robert K. A. Bennett, Kirstin Schauble, Marc Jaikissoon, Kathryn Neilson, Anh Tuan Hoang, Andrew J. Mannix, Kwanpyo Kim, Krishna C. Saraswat and Eric Pop*, 
{"title":"单元化二硫化钼晶体管的亚纳米等效氧化厚度和阈值电压控制","authors":"Jung-Soo Ko,&nbsp;Sol Lee,&nbsp;Robert K. A. Bennett,&nbsp;Kirstin Schauble,&nbsp;Marc Jaikissoon,&nbsp;Kathryn Neilson,&nbsp;Anh Tuan Hoang,&nbsp;Andrew J. Mannix,&nbsp;Kwanpyo Kim,&nbsp;Krishna C. Saraswat and Eric Pop*,&nbsp;","doi":"10.1021/acs.nanolett.4c0177510.1021/acs.nanolett.4c01775","DOIUrl":null,"url":null,"abstract":"<p >Low-power transistors based on two-dimensional (2D) semiconductors require ultrathin gate insulators, whose atomic layer deposition (ALD) has been difficult without adequate surface preparation. Here, we achieve sub-1 nm equivalent oxide thickness (EOT) on monolayer MoS<sub>2</sub> using HfO<sub>2</sub> and a simple, commonly available Si seed. We first investigate six seed layer candidates (Si, Ge, Hf, La, Gd, Al<sub>2</sub>O<sub>3</sub>) and find that only Si and Ge cause no measurable damage to the MoS<sub>2</sub>. With these, we build monolayer MoS<sub>2</sub> transistors using ALD of HfO<sub>2</sub> top-gate dielectric and find that the Si seed provides the better, low-hysteresis interface. The thickness of this interfacial layer also controls the threshold voltage, enabling normally-off, well-behaved transistors. The thinnest gate stack reached low EOT ≈ 0.9 nm with low leakage (&lt;0.6 μA/cm<sup>2</sup>) and ∼80 mV/dec subthreshold swing at room temperature. This represents a simple top-gate dielectric deposition approach, achievable within many common nanofabrication facilities.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 7","pages":"2587–2593 2587–2593"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-Nanometer Equivalent Oxide Thickness and Threshold Voltage Control Enabled by Silicon Seed Layer on Monolayer MoS2 Transistors\",\"authors\":\"Jung-Soo Ko,&nbsp;Sol Lee,&nbsp;Robert K. A. Bennett,&nbsp;Kirstin Schauble,&nbsp;Marc Jaikissoon,&nbsp;Kathryn Neilson,&nbsp;Anh Tuan Hoang,&nbsp;Andrew J. Mannix,&nbsp;Kwanpyo Kim,&nbsp;Krishna C. Saraswat and Eric Pop*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0177510.1021/acs.nanolett.4c01775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Low-power transistors based on two-dimensional (2D) semiconductors require ultrathin gate insulators, whose atomic layer deposition (ALD) has been difficult without adequate surface preparation. Here, we achieve sub-1 nm equivalent oxide thickness (EOT) on monolayer MoS<sub>2</sub> using HfO<sub>2</sub> and a simple, commonly available Si seed. We first investigate six seed layer candidates (Si, Ge, Hf, La, Gd, Al<sub>2</sub>O<sub>3</sub>) and find that only Si and Ge cause no measurable damage to the MoS<sub>2</sub>. With these, we build monolayer MoS<sub>2</sub> transistors using ALD of HfO<sub>2</sub> top-gate dielectric and find that the Si seed provides the better, low-hysteresis interface. The thickness of this interfacial layer also controls the threshold voltage, enabling normally-off, well-behaved transistors. The thinnest gate stack reached low EOT ≈ 0.9 nm with low leakage (&lt;0.6 μA/cm<sup>2</sup>) and ∼80 mV/dec subthreshold swing at room temperature. This represents a simple top-gate dielectric deposition approach, achievable within many common nanofabrication facilities.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 7\",\"pages\":\"2587–2593 2587–2593\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01775\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01775","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于二维(2D)半导体的低功耗晶体管需要超薄栅极绝缘体,如果没有足够的表面制备,其原子层沉积(ALD)一直是困难的。在这里,我们使用HfO2和一种简单的、常见的Si种子在单层MoS2上实现了亚1nm的等效氧化厚度(EOT)。我们首先研究了六种种子层候选物质(Si, Ge, Hf, La, Gd, Al2O3),发现只有Si和Ge对MoS2没有可测量的损伤。利用这些,我们使用HfO2顶栅电介质的ALD构建了单层MoS2晶体管,并发现Si种子提供了更好的低迟滞接口。该界面层的厚度也控制阈值电压,使正常关闭,性能良好的晶体管。在室温下,最薄的栅极堆叠达到EOT≈0.9 nm,漏电率低(<0.6 μA/cm2),亚阈值摆幅为~ 80 mV/dec。这代表了一种简单的顶栅电介质沉积方法,可以在许多常见的纳米制造设备中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sub-Nanometer Equivalent Oxide Thickness and Threshold Voltage Control Enabled by Silicon Seed Layer on Monolayer MoS2 Transistors

Sub-Nanometer Equivalent Oxide Thickness and Threshold Voltage Control Enabled by Silicon Seed Layer on Monolayer MoS2 Transistors

Low-power transistors based on two-dimensional (2D) semiconductors require ultrathin gate insulators, whose atomic layer deposition (ALD) has been difficult without adequate surface preparation. Here, we achieve sub-1 nm equivalent oxide thickness (EOT) on monolayer MoS2 using HfO2 and a simple, commonly available Si seed. We first investigate six seed layer candidates (Si, Ge, Hf, La, Gd, Al2O3) and find that only Si and Ge cause no measurable damage to the MoS2. With these, we build monolayer MoS2 transistors using ALD of HfO2 top-gate dielectric and find that the Si seed provides the better, low-hysteresis interface. The thickness of this interfacial layer also controls the threshold voltage, enabling normally-off, well-behaved transistors. The thinnest gate stack reached low EOT ≈ 0.9 nm with low leakage (<0.6 μA/cm2) and ∼80 mV/dec subthreshold swing at room temperature. This represents a simple top-gate dielectric deposition approach, achievable within many common nanofabrication facilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信