具有高特异性的活细胞ATP成像基因编码单波长传感器

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lu Xiao, Xuexi Wang, Dujuan Liu, Chuang Yan, Xian-En Zhang, Minghai Chen
{"title":"具有高特异性的活细胞ATP成像基因编码单波长传感器","authors":"Lu Xiao, Xuexi Wang, Dujuan Liu, Chuang Yan, Xian-En Zhang, Minghai Chen","doi":"10.1021/acssensors.4c03389","DOIUrl":null,"url":null,"abstract":"Adenosine 5′-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus–host interaction process. OAS1.0 also worked well with a Ca<sup>2+</sup> sensor to concurrently monitor ATP and Ca<sup>2+</sup> dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"7 Dermatol Sect 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells\",\"authors\":\"Lu Xiao, Xuexi Wang, Dujuan Liu, Chuang Yan, Xian-En Zhang, Minghai Chen\",\"doi\":\"10.1021/acssensors.4c03389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adenosine 5′-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus–host interaction process. OAS1.0 also worked well with a Ca<sup>2+</sup> sensor to concurrently monitor ATP and Ca<sup>2+</sup> dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"7 Dermatol Sect 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c03389\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03389","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

腺苷5 ' -三磷酸(ATP)在调节许多代谢活动中起着重要作用。因此,开发直接实时测量ATP的工具将有助于我们了解其潜在功能。在这里,我们报告了一个优化的遗传编码ATP传感器(OAS1.0),具有高特异性的ATP检测。OAS1.0可以基因靶向特定的细胞类型和亚细胞区室来监测ATP的产生和消耗。我们还使用OAS1.0可视化正常和肿瘤细胞系中ATP的代谢活性依赖性变化以及病毒-宿主相互作用过程中ATP的消耗。OAS1.0还可以很好地与Ca2+传感器一起工作,同时监测活细胞中的ATP和Ca2+动态。因此,OAS1.0在生理和病理生理条件下都是一种很有前途的ATP成像工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells

Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells
Adenosine 5′-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus–host interaction process. OAS1.0 also worked well with a Ca2+ sensor to concurrently monitor ATP and Ca2+ dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信