利用界面工程控制缺陷WSe2单层的载流子寿命:时域从头算研究

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Amine Slassi, Reda Moukaouine, Jérôme Cornil, Anton Pershin
{"title":"利用界面工程控制缺陷WSe2单层的载流子寿命:时域从头算研究","authors":"Amine Slassi, Reda Moukaouine, Jérôme Cornil, Anton Pershin","doi":"10.1021/acs.jpclett.4c03723","DOIUrl":null,"url":null,"abstract":"Trap states induced by chalcogenide vacancies in defective transition metal dichalcogenide (TMDs) monolayers are detrimental to both the charge carrier lifetime and device efficiency. To address this, chemically functionalizing the surface of defective TMD monolayers is crucial. Experimental methods such as thiol grafting on chalcogenide vacancies, oxygen passivation, and the physisorption of electroactive molecules have been explored for defect healing. Our study, using ab initio time-domain density functional theory and nonadiabatic molecular dynamics, shows that C<sub>20</sub> molecular adsorption and oxygen passivation effectively mitigate nonradiative electron–hole recombination and enhance carrier charge lifetime in defective WSe<sub>2</sub> beyond that of pristine WSe<sub>2</sub> monolayers. These improvements stem from the combined effects of energy gap variations, nonadiabatic coupling, and decoherence time, resulting from either hole-trap-assisted processes or direct interactions between free electrons and holes. Our findings suggest that healing chalcogenide vacancies in defective TMDs enables precise control over charge carrier lifetime, advancing defect engineering in 2D materials.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"23 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling Charge Carrier Lifetime in Defective WSe2 Monolayer through Interface Engineering: a Time-Domain Ab Initio Study\",\"authors\":\"Amine Slassi, Reda Moukaouine, Jérôme Cornil, Anton Pershin\",\"doi\":\"10.1021/acs.jpclett.4c03723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trap states induced by chalcogenide vacancies in defective transition metal dichalcogenide (TMDs) monolayers are detrimental to both the charge carrier lifetime and device efficiency. To address this, chemically functionalizing the surface of defective TMD monolayers is crucial. Experimental methods such as thiol grafting on chalcogenide vacancies, oxygen passivation, and the physisorption of electroactive molecules have been explored for defect healing. Our study, using ab initio time-domain density functional theory and nonadiabatic molecular dynamics, shows that C<sub>20</sub> molecular adsorption and oxygen passivation effectively mitigate nonradiative electron–hole recombination and enhance carrier charge lifetime in defective WSe<sub>2</sub> beyond that of pristine WSe<sub>2</sub> monolayers. These improvements stem from the combined effects of energy gap variations, nonadiabatic coupling, and decoherence time, resulting from either hole-trap-assisted processes or direct interactions between free electrons and holes. Our findings suggest that healing chalcogenide vacancies in defective TMDs enables precise control over charge carrier lifetime, advancing defect engineering in 2D materials.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c03723\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03723","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在有缺陷的过渡金属二硫族化合物(TMDs)单层中,由硫族化合物空位引起的陷阱态对载流子寿命和器件效率都是不利的。为了解决这个问题,化学功能化缺陷TMD单层的表面是至关重要的。硫族化合物空位上的硫醇接枝、氧钝化和电活性分子的物理吸附等实验方法已被用于缺陷修复。我们利用从头算时域密度泛函理论和非绝热分子动力学的研究表明,C20分子吸附和氧钝化有效地减轻了缺陷WSe2的非辐射电子-空穴复合,并提高了缺陷WSe2的载流子寿命,超过了原始WSe2单层。这些改进源于空穴阱辅助过程或自由电子与空穴之间直接相互作用引起的能隙变化、非绝热耦合和退相干时间的综合效应。我们的研究结果表明,修复缺陷tmd中的硫族化物空位可以精确控制电荷载流子寿命,推进二维材料的缺陷工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Controlling Charge Carrier Lifetime in Defective WSe2 Monolayer through Interface Engineering: a Time-Domain Ab Initio Study

Controlling Charge Carrier Lifetime in Defective WSe2 Monolayer through Interface Engineering: a Time-Domain Ab Initio Study
Trap states induced by chalcogenide vacancies in defective transition metal dichalcogenide (TMDs) monolayers are detrimental to both the charge carrier lifetime and device efficiency. To address this, chemically functionalizing the surface of defective TMD monolayers is crucial. Experimental methods such as thiol grafting on chalcogenide vacancies, oxygen passivation, and the physisorption of electroactive molecules have been explored for defect healing. Our study, using ab initio time-domain density functional theory and nonadiabatic molecular dynamics, shows that C20 molecular adsorption and oxygen passivation effectively mitigate nonradiative electron–hole recombination and enhance carrier charge lifetime in defective WSe2 beyond that of pristine WSe2 monolayers. These improvements stem from the combined effects of energy gap variations, nonadiabatic coupling, and decoherence time, resulting from either hole-trap-assisted processes or direct interactions between free electrons and holes. Our findings suggest that healing chalcogenide vacancies in defective TMDs enables precise control over charge carrier lifetime, advancing defect engineering in 2D materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信