高效电荷储存动力学的梯度多孔碳超结构

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yinying Long, Xingye An, Yiluo Yang, Jian Yang, Liqin Liu, Xin Tong, Xiongli Liu, Hongbin Liu, Yonghao Ni
{"title":"高效电荷储存动力学的梯度多孔碳超结构","authors":"Yinying Long,&nbsp;Xingye An,&nbsp;Yiluo Yang,&nbsp;Jian Yang,&nbsp;Liqin Liu,&nbsp;Xin Tong,&nbsp;Xiongli Liu,&nbsp;Hongbin Liu,&nbsp;Yonghao Ni","doi":"10.1002/adfm.202424551","DOIUrl":null,"url":null,"abstract":"<p>Zinc-ion hybrid supercapacitors (ZHSCs) are emerging for high-efficiency energy storage. However, single-layer cathode materials often suffer from low-charge storage kinetics. Herein, an innovative gradient porous carbon superstructure with enhanced charge storage kinetics is developed, achieved by designing a concentration gradient carbon superstructure to facilitate rapid, directional ion transport and efficient ion storage. The gradient pore design with optimized micropore sizes (0.88 to 0.96 nm) and mesopore size (≈4 nm) enhances the hydrated zinc ion ([Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>) diffusion, facilitating efficient desolvation and Zn<sup>2+</sup> ion storage. Furthermore, N/O co-doping provides pseudo-capacitance by lowering the energy barrier for C-O-Zn bond formation, increasing the defect density and conductivity of the carbon material. Further graphitization improves conductivity and wettability, while a high specific surface area (SSA) offers abundant active sites. ZHSCs fabricated with this gradient porous carbon superstructure exhibit a remarkably high energy density of 101.8 Wh kg<sup>−1</sup> at a substantial power density of 503.6 W kg<sup>−1</sup>, outperforming the reported benchmark materials. The exceptional charge–discharge cycling stability is also demonstrated over 10 000 cycles. This work presents an effective strategy for enhancing charge storage kinetics in supercapacitors.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 28","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient Porous Carbon Superstructures for High-efficiency Charge Storage Kinetics\",\"authors\":\"Yinying Long,&nbsp;Xingye An,&nbsp;Yiluo Yang,&nbsp;Jian Yang,&nbsp;Liqin Liu,&nbsp;Xin Tong,&nbsp;Xiongli Liu,&nbsp;Hongbin Liu,&nbsp;Yonghao Ni\",\"doi\":\"10.1002/adfm.202424551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc-ion hybrid supercapacitors (ZHSCs) are emerging for high-efficiency energy storage. However, single-layer cathode materials often suffer from low-charge storage kinetics. Herein, an innovative gradient porous carbon superstructure with enhanced charge storage kinetics is developed, achieved by designing a concentration gradient carbon superstructure to facilitate rapid, directional ion transport and efficient ion storage. The gradient pore design with optimized micropore sizes (0.88 to 0.96 nm) and mesopore size (≈4 nm) enhances the hydrated zinc ion ([Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>) diffusion, facilitating efficient desolvation and Zn<sup>2+</sup> ion storage. Furthermore, N/O co-doping provides pseudo-capacitance by lowering the energy barrier for C-O-Zn bond formation, increasing the defect density and conductivity of the carbon material. Further graphitization improves conductivity and wettability, while a high specific surface area (SSA) offers abundant active sites. ZHSCs fabricated with this gradient porous carbon superstructure exhibit a remarkably high energy density of 101.8 Wh kg<sup>−1</sup> at a substantial power density of 503.6 W kg<sup>−1</sup>, outperforming the reported benchmark materials. The exceptional charge–discharge cycling stability is also demonstrated over 10 000 cycles. This work presents an effective strategy for enhancing charge storage kinetics in supercapacitors.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 28\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424551\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌离子混合超级电容器(ZHSCs)是一种用于高效储能的新型电容器。然而,单层正极材料往往受到低电荷存储动力学的影响。本文通过设计浓度梯度碳上层结构来促进快速、定向离子传输和高效离子存储,开发了一种具有增强电荷存储动力学的创新梯度多孔碳上层结构。优化微孔尺寸(0.88 ~ 0.96 nm)和介孔尺寸(≈4 nm)的梯度孔设计增强了水合锌离子([Zn(H2O)6]2+)的扩散,有利于高效脱溶和Zn2+离子的储存。此外,N/O共掺杂降低了C-O-Zn键形成的能垒,增加了碳材料的缺陷密度和电导率,从而提供了伪电容。进一步的石墨化提高了导电性和润湿性,而高比表面积(SSA)提供了丰富的活性位点。采用这种梯度多孔碳上层结构制备的zhsc在503.6 W kg - 1的功率密度下表现出101.8 Wh kg - 1的高能量密度,优于报道的基准材料。超常的充放电循环稳定性也被证明超过10,000次循环。本研究提出了一种提高超级电容器电荷存储动力学的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gradient Porous Carbon Superstructures for High-efficiency Charge Storage Kinetics

Gradient Porous Carbon Superstructures for High-efficiency Charge Storage Kinetics

Gradient Porous Carbon Superstructures for High-efficiency Charge Storage Kinetics

Gradient Porous Carbon Superstructures for High-efficiency Charge Storage Kinetics

Gradient Porous Carbon Superstructures for High-efficiency Charge Storage Kinetics

Gradient Porous Carbon Superstructures for High-efficiency Charge Storage Kinetics

Zinc-ion hybrid supercapacitors (ZHSCs) are emerging for high-efficiency energy storage. However, single-layer cathode materials often suffer from low-charge storage kinetics. Herein, an innovative gradient porous carbon superstructure with enhanced charge storage kinetics is developed, achieved by designing a concentration gradient carbon superstructure to facilitate rapid, directional ion transport and efficient ion storage. The gradient pore design with optimized micropore sizes (0.88 to 0.96 nm) and mesopore size (≈4 nm) enhances the hydrated zinc ion ([Zn(H2O)6]2+) diffusion, facilitating efficient desolvation and Zn2+ ion storage. Furthermore, N/O co-doping provides pseudo-capacitance by lowering the energy barrier for C-O-Zn bond formation, increasing the defect density and conductivity of the carbon material. Further graphitization improves conductivity and wettability, while a high specific surface area (SSA) offers abundant active sites. ZHSCs fabricated with this gradient porous carbon superstructure exhibit a remarkably high energy density of 101.8 Wh kg−1 at a substantial power density of 503.6 W kg−1, outperforming the reported benchmark materials. The exceptional charge–discharge cycling stability is also demonstrated over 10 000 cycles. This work presents an effective strategy for enhancing charge storage kinetics in supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信