由π -π堆叠介导的双层分子桥改善钙钛矿太阳能电池的界面电荷输运

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lingfang Zheng, Xiaoyan Luo, Xiaguang Zhang, Yu Huang, Lina Shen, Fangyao Li, Jinxin Yang, Chengbo Tian, Liqiang Xie, Zhanhua Wei
{"title":"由π -π堆叠介导的双层分子桥改善钙钛矿太阳能电池的界面电荷输运","authors":"Lingfang Zheng,&nbsp;Xiaoyan Luo,&nbsp;Xiaguang Zhang,&nbsp;Yu Huang,&nbsp;Lina Shen,&nbsp;Fangyao Li,&nbsp;Jinxin Yang,&nbsp;Chengbo Tian,&nbsp;Liqiang Xie,&nbsp;Zhanhua Wei","doi":"10.1002/adfm.202424464","DOIUrl":null,"url":null,"abstract":"<p>Molecular bridges with one end absorbed on the electron transport layer (ETL) and the other bound to perovskite can effectively repair imperfections at the ETL/perovskite interface. However, single-layered bridges usually coexist with undesired double-layered molecules, leaving a Van der Waals gap between them. Charge transport can only occur via the tunneling effect to travel through the gap, which requires a forward voltage bias and leads to a constrained charge transport efficiency. Herein, the study designs and synthesizes an imidazolium derivative ionic salt of 1,3-dibenzyl-2-phenylimidazolium chloride (DPhImCl), featuring multiple aromatic side chains, to form bilayered interfacial molecular bridges mediated by π–π stacking. The study reveals that DPhIm<sup>+</sup> strongly adsorbs on both the SnO<sub>2</sub> and perovskite surfaces via the imidazolium ring, while the two layers of DPhIm<sup>+</sup> absorbed on SnO<sub>2</sub> and perovskite respectively interact through π–π stacking of the benzene ring in side chains, forming bilayered molecular bridge at the SnO<sub>2</sub>/perovskite interface. This π–π interaction promotes the orderly stacking of molecular layers and creates hopping channels for electron transport, thus facilitating the interfacial charge transfer efficiency. As a result, an impressive device efficiency of 25.90% (certified 25.27%) and a robust <i>T</i><sub>90</sub> operational lifetime of 1101 h for n-i-p perovskite solar cells achieved.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 28","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayered Molecular Bridge Mediated by π–π Stacking for Improved Interfacial Charge Transport in Perovskite Solar Cells\",\"authors\":\"Lingfang Zheng,&nbsp;Xiaoyan Luo,&nbsp;Xiaguang Zhang,&nbsp;Yu Huang,&nbsp;Lina Shen,&nbsp;Fangyao Li,&nbsp;Jinxin Yang,&nbsp;Chengbo Tian,&nbsp;Liqiang Xie,&nbsp;Zhanhua Wei\",\"doi\":\"10.1002/adfm.202424464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular bridges with one end absorbed on the electron transport layer (ETL) and the other bound to perovskite can effectively repair imperfections at the ETL/perovskite interface. However, single-layered bridges usually coexist with undesired double-layered molecules, leaving a Van der Waals gap between them. Charge transport can only occur via the tunneling effect to travel through the gap, which requires a forward voltage bias and leads to a constrained charge transport efficiency. Herein, the study designs and synthesizes an imidazolium derivative ionic salt of 1,3-dibenzyl-2-phenylimidazolium chloride (DPhImCl), featuring multiple aromatic side chains, to form bilayered interfacial molecular bridges mediated by π–π stacking. The study reveals that DPhIm<sup>+</sup> strongly adsorbs on both the SnO<sub>2</sub> and perovskite surfaces via the imidazolium ring, while the two layers of DPhIm<sup>+</sup> absorbed on SnO<sub>2</sub> and perovskite respectively interact through π–π stacking of the benzene ring in side chains, forming bilayered molecular bridge at the SnO<sub>2</sub>/perovskite interface. This π–π interaction promotes the orderly stacking of molecular layers and creates hopping channels for electron transport, thus facilitating the interfacial charge transfer efficiency. As a result, an impressive device efficiency of 25.90% (certified 25.27%) and a robust <i>T</i><sub>90</sub> operational lifetime of 1101 h for n-i-p perovskite solar cells achieved.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 28\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424464\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424464","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一端吸附在电子传递层(ETL)上,另一端与钙钛矿结合的分子桥可以有效地修复ETL/钙钛矿界面的缺陷。然而,单层桥通常与不需要的双层分子共存,在它们之间留下范德华间隙。电荷输运只能通过隧道效应通过间隙,这需要正向电压偏置,导致电荷输运效率受限。本研究设计并合成了1,3-二苄基-2-苯基咪唑氯(DPhImCl)的咪唑衍生物离子盐,具有多个芳香侧链,通过π -π堆叠形成双层界面分子桥。研究表明,DPhIm+通过咪唑环在SnO2和钙钛矿表面均有强吸附,而吸附在SnO2和钙钛矿表面的两层DPhIm+分别通过苯环侧链的π -π堆叠相互作用,在SnO2/钙钛矿界面形成双层分子桥。这种π -π相互作用促进了分子层的有序堆积,并为电子传递创造了跳跃通道,从而提高了界面电荷转移效率。结果,n-i-p钙钛矿太阳能电池的器件效率达到了令人印象深刻的25.90%(认证为25.27%),T90工作寿命达到了1101小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bilayered Molecular Bridge Mediated by π–π Stacking for Improved Interfacial Charge Transport in Perovskite Solar Cells

Bilayered Molecular Bridge Mediated by π–π Stacking for Improved Interfacial Charge Transport in Perovskite Solar Cells

Bilayered Molecular Bridge Mediated by π–π Stacking for Improved Interfacial Charge Transport in Perovskite Solar Cells

Bilayered Molecular Bridge Mediated by π–π Stacking for Improved Interfacial Charge Transport in Perovskite Solar Cells

Bilayered Molecular Bridge Mediated by π–π Stacking for Improved Interfacial Charge Transport in Perovskite Solar Cells

Bilayered Molecular Bridge Mediated by π–π Stacking for Improved Interfacial Charge Transport in Perovskite Solar Cells

Molecular bridges with one end absorbed on the electron transport layer (ETL) and the other bound to perovskite can effectively repair imperfections at the ETL/perovskite interface. However, single-layered bridges usually coexist with undesired double-layered molecules, leaving a Van der Waals gap between them. Charge transport can only occur via the tunneling effect to travel through the gap, which requires a forward voltage bias and leads to a constrained charge transport efficiency. Herein, the study designs and synthesizes an imidazolium derivative ionic salt of 1,3-dibenzyl-2-phenylimidazolium chloride (DPhImCl), featuring multiple aromatic side chains, to form bilayered interfacial molecular bridges mediated by π–π stacking. The study reveals that DPhIm+ strongly adsorbs on both the SnO2 and perovskite surfaces via the imidazolium ring, while the two layers of DPhIm+ absorbed on SnO2 and perovskite respectively interact through π–π stacking of the benzene ring in side chains, forming bilayered molecular bridge at the SnO2/perovskite interface. This π–π interaction promotes the orderly stacking of molecular layers and creates hopping channels for electron transport, thus facilitating the interfacial charge transfer efficiency. As a result, an impressive device efficiency of 25.90% (certified 25.27%) and a robust T90 operational lifetime of 1101 h for n-i-p perovskite solar cells achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信