Li Zhang, Weibin Li, Zhen Xu, Zhennan Mao, Mengqian Yang, Caixia Wang and Zhihong Liu
{"title":"通过同时改善细胞摄取和加速溶酶体逃逸,促进血脑屏障的跨细胞穿越","authors":"Li Zhang, Weibin Li, Zhen Xu, Zhennan Mao, Mengqian Yang, Caixia Wang and Zhihong Liu","doi":"10.1039/D4NR05134C","DOIUrl":null,"url":null,"abstract":"<p >The blood–brain barrier (BBB) impedes the transportation of drugs to the brain, thereby constraining the efficacy of treatments for brain diseases. Here, a pH-sensitive nanocarrier coated with a brain metastatic tumor cell membrane (CA-iRGD-CS@M) is designed to enhance drug delivery across the BBB by simultaneously improving cellular uptake and accelerating lysosomal escape. The cell membrane coating can recognize brain microvessel endothelial cells (BMECs) to improve cellular uptake. The pH-sensitive nanocarrier (CA-iRGD-CS) as the core of CA-iRGD-CS@M undergoes charge reversal triggered by the acidic environment of lysosomes, leading to the disruption of the coated cell membrane and further promoting the escape of the detached core from lysosomes into the brain parenchyma. Facilitated by the targeting ligand iRGD, the detached core containing the photothermal agent (CuS) can target the tumor site and fulfill deep penetration, thereby achieving efficient NIR-II photothermal therapy.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 11","pages":" 6780-6792"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting transcellular traversal of the blood–brain barrier by simultaneously improving cellular uptake and accelerating lysosomal escape†\",\"authors\":\"Li Zhang, Weibin Li, Zhen Xu, Zhennan Mao, Mengqian Yang, Caixia Wang and Zhihong Liu\",\"doi\":\"10.1039/D4NR05134C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The blood–brain barrier (BBB) impedes the transportation of drugs to the brain, thereby constraining the efficacy of treatments for brain diseases. Here, a pH-sensitive nanocarrier coated with a brain metastatic tumor cell membrane (CA-iRGD-CS@M) is designed to enhance drug delivery across the BBB by simultaneously improving cellular uptake and accelerating lysosomal escape. The cell membrane coating can recognize brain microvessel endothelial cells (BMECs) to improve cellular uptake. The pH-sensitive nanocarrier (CA-iRGD-CS) as the core of CA-iRGD-CS@M undergoes charge reversal triggered by the acidic environment of lysosomes, leading to the disruption of the coated cell membrane and further promoting the escape of the detached core from lysosomes into the brain parenchyma. Facilitated by the targeting ligand iRGD, the detached core containing the photothermal agent (CuS) can target the tumor site and fulfill deep penetration, thereby achieving efficient NIR-II photothermal therapy.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 11\",\"pages\":\" 6780-6792\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05134c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05134c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Promoting transcellular traversal of the blood–brain barrier by simultaneously improving cellular uptake and accelerating lysosomal escape†
The blood–brain barrier (BBB) impedes the transportation of drugs to the brain, thereby constraining the efficacy of treatments for brain diseases. Here, a pH-sensitive nanocarrier coated with a brain metastatic tumor cell membrane (CA-iRGD-CS@M) is designed to enhance drug delivery across the BBB by simultaneously improving cellular uptake and accelerating lysosomal escape. The cell membrane coating can recognize brain microvessel endothelial cells (BMECs) to improve cellular uptake. The pH-sensitive nanocarrier (CA-iRGD-CS) as the core of CA-iRGD-CS@M undergoes charge reversal triggered by the acidic environment of lysosomes, leading to the disruption of the coated cell membrane and further promoting the escape of the detached core from lysosomes into the brain parenchyma. Facilitated by the targeting ligand iRGD, the detached core containing the photothermal agent (CuS) can target the tumor site and fulfill deep penetration, thereby achieving efficient NIR-II photothermal therapy.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.