{"title":"Atmospheric circulation to constrain subtropical precipitation projections","authors":"Rei Chemke, Janni Yuval","doi":"10.1038/s41558-025-02266-5","DOIUrl":null,"url":null,"abstract":"<p>Accurately assessing future precipitation changes presents one of the greatest challenges of climate change. In the tropics, changes in the Hadley circulation are expected to considerably affect precipitation in dry subtropical and wet equatorial regions. However, while climate models project a robust weakening of the Northern Hemisphere circulation in the coming decades, currently, there is low confidence in the magnitude of such weakening and its impact on regional precipitation patterns. Here we use emergent constraint analyses and observation-based Hadley circulation strength changes to show that the projected circulation weakening will probably be larger than in current predictions. The more pronounced weakening of the flow results in a doubling of the subtropical precipitation increase compared with current forecasts, specifically over Asia, Africa and the Pacific Ocean. Our findings provide more accurate tropical circulation and precipitation projections and have considerable societal impacts, given the scarcity of water in subtropical regions.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"10 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02266-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Atmospheric circulation to constrain subtropical precipitation projections
Accurately assessing future precipitation changes presents one of the greatest challenges of climate change. In the tropics, changes in the Hadley circulation are expected to considerably affect precipitation in dry subtropical and wet equatorial regions. However, while climate models project a robust weakening of the Northern Hemisphere circulation in the coming decades, currently, there is low confidence in the magnitude of such weakening and its impact on regional precipitation patterns. Here we use emergent constraint analyses and observation-based Hadley circulation strength changes to show that the projected circulation weakening will probably be larger than in current predictions. The more pronounced weakening of the flow results in a doubling of the subtropical precipitation increase compared with current forecasts, specifically over Asia, Africa and the Pacific Ocean. Our findings provide more accurate tropical circulation and precipitation projections and have considerable societal impacts, given the scarcity of water in subtropical regions.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.