利用水稻作物遥感数据改进收获机产量图的后处理

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
D. Fita, C. Rubio, B. Franch, S. Castiñeira-Ibáñez, D. Tarrazó-Serrano, A. San Bautista
{"title":"利用水稻作物遥感数据改进收获机产量图的后处理","authors":"D. Fita, C. Rubio, B. Franch, S. Castiñeira-Ibáñez, D. Tarrazó-Serrano, A. San Bautista","doi":"10.1007/s11119-025-10219-3","DOIUrl":null,"url":null,"abstract":"<p>Precision Agriculture relies significantly on yield data obtained from combine harvesters, which constitutes a pivotal tool for optimizing crop productivity. Despite its potential, challenges in data accuracy persist, necessitating the development of novel automated postprocessing protocols for yield data refinement. In this paper, different automatic postprocessing protocols were evaluated using remote sensing data, specifically Sentinel-2 satellite imagery. Various automatic postprocessing protocols were applied to a dataset spanning 946 hectares over a four-year period. Commercial sensors on combine harvesters acquired the yield data. The analysis included global (field-level) adjustments and local adjustments at a finer scale (40 × 40 m² level), employing interval mean ± n·(standard deviation) calculations. Three n values (1, 1.5, and 2.5) were tested, resulting in thirteen distinct postprocessing variations. Finally, a mean filter was also applied. The results demonstrated that the yield correlation with satellite data increased with the reduction of yield variability at the pixel level (10 m). The best results were obtained using <i>n</i> = 1 with a 3 × 3 mean filter, where Sentinel-2 pixels remained unaffected, and the average Root Mean Square Error (RMSE) during validation was 0.572 t·ha⁻¹. In addition, the geostatistical parameters (coefficient of variation, semivariance, and range within a 10 m pixel) reached optimal values. Finally, the postprocessing uncertainty was determined to be 0.200 t·ha<sup>−1</sup>. These results validate the efficacy of a novel postprocessing protocol for refining yield data in rice crops. The integration of pixel-level data from combine harvesters with Sentinel-2 imagery emerges as a promising approach for optimizing crop management, offering valuable insights for the advancement of Precision Agriculture.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"6 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving harvester yield maps postprocessing leveraging remote sensing data in rice crop\",\"authors\":\"D. Fita, C. Rubio, B. Franch, S. Castiñeira-Ibáñez, D. Tarrazó-Serrano, A. San Bautista\",\"doi\":\"10.1007/s11119-025-10219-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precision Agriculture relies significantly on yield data obtained from combine harvesters, which constitutes a pivotal tool for optimizing crop productivity. Despite its potential, challenges in data accuracy persist, necessitating the development of novel automated postprocessing protocols for yield data refinement. In this paper, different automatic postprocessing protocols were evaluated using remote sensing data, specifically Sentinel-2 satellite imagery. Various automatic postprocessing protocols were applied to a dataset spanning 946 hectares over a four-year period. Commercial sensors on combine harvesters acquired the yield data. The analysis included global (field-level) adjustments and local adjustments at a finer scale (40 × 40 m² level), employing interval mean ± n·(standard deviation) calculations. Three n values (1, 1.5, and 2.5) were tested, resulting in thirteen distinct postprocessing variations. Finally, a mean filter was also applied. The results demonstrated that the yield correlation with satellite data increased with the reduction of yield variability at the pixel level (10 m). The best results were obtained using <i>n</i> = 1 with a 3 × 3 mean filter, where Sentinel-2 pixels remained unaffected, and the average Root Mean Square Error (RMSE) during validation was 0.572 t·ha⁻¹. In addition, the geostatistical parameters (coefficient of variation, semivariance, and range within a 10 m pixel) reached optimal values. Finally, the postprocessing uncertainty was determined to be 0.200 t·ha<sup>−1</sup>. These results validate the efficacy of a novel postprocessing protocol for refining yield data in rice crops. The integration of pixel-level data from combine harvesters with Sentinel-2 imagery emerges as a promising approach for optimizing crop management, offering valuable insights for the advancement of Precision Agriculture.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-025-10219-3\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10219-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

精准农业在很大程度上依赖于联合收割机获得的产量数据,这是优化作物生产力的关键工具。尽管具有潜力,但数据准确性方面的挑战仍然存在,因此需要开发新的自动化后处理协议来优化产量数据。本文利用遥感数据,特别是Sentinel-2卫星图像,对不同的自动后处理协议进行了评估。各种自动后处理协议应用于四年期间跨越946公顷的数据集。联合收割机上的商用传感器获取产量数据。分析采用区间均值±n·(标准差)计算,包括全球(现场水平)调整和更精细尺度(40 × 40 m²水平)的局部调整。测试了三个值(1、1.5和2.5),产生了13种不同的后处理变化。最后,采用均值滤波。结果表明,产量相关性与卫星数据增加产量的减少可变性在像素级别(10米)。最好的结果使用n = 1和3×3均值滤波,Sentinel-2像素仍然不受影响,平均均方根误差(RMSE)验证期间为0.572 t·哈⁻¹。此外,地统计参数(变异系数、半方差系数和10 m像素范围)达到了最佳值。最后,确定后处理不确定度为0.200 t·ha−1。这些结果验证了一种用于精炼水稻作物产量数据的新型后处理方案的有效性。联合收割机的像素级数据与Sentinel-2图像的整合成为优化作物管理的一种有前途的方法,为推进精准农业提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving harvester yield maps postprocessing leveraging remote sensing data in rice crop

Precision Agriculture relies significantly on yield data obtained from combine harvesters, which constitutes a pivotal tool for optimizing crop productivity. Despite its potential, challenges in data accuracy persist, necessitating the development of novel automated postprocessing protocols for yield data refinement. In this paper, different automatic postprocessing protocols were evaluated using remote sensing data, specifically Sentinel-2 satellite imagery. Various automatic postprocessing protocols were applied to a dataset spanning 946 hectares over a four-year period. Commercial sensors on combine harvesters acquired the yield data. The analysis included global (field-level) adjustments and local adjustments at a finer scale (40 × 40 m² level), employing interval mean ± n·(standard deviation) calculations. Three n values (1, 1.5, and 2.5) were tested, resulting in thirteen distinct postprocessing variations. Finally, a mean filter was also applied. The results demonstrated that the yield correlation with satellite data increased with the reduction of yield variability at the pixel level (10 m). The best results were obtained using n = 1 with a 3 × 3 mean filter, where Sentinel-2 pixels remained unaffected, and the average Root Mean Square Error (RMSE) during validation was 0.572 t·ha⁻¹. In addition, the geostatistical parameters (coefficient of variation, semivariance, and range within a 10 m pixel) reached optimal values. Finally, the postprocessing uncertainty was determined to be 0.200 t·ha−1. These results validate the efficacy of a novel postprocessing protocol for refining yield data in rice crops. The integration of pixel-level data from combine harvesters with Sentinel-2 imagery emerges as a promising approach for optimizing crop management, offering valuable insights for the advancement of Precision Agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信