结合机器学习和人类使用经验识别中医个性化药物治疗:顽固性高血压的案例研究。

Che Qianzi, Liu Dasheng, Xiang Xinghua, Tian Yaxin, Xie Feibiao, X U Wenyuan, Liu Jian, Wang Xuejie, Wang Liying, Bai Weiguo, Han Xuejie, Yang Wei
{"title":"结合机器学习和人类使用经验识别中医个性化药物治疗:顽固性高血压的案例研究。","authors":"Che Qianzi, Liu Dasheng, Xiang Xinghua, Tian Yaxin, Xie Feibiao, X U Wenyuan, Liu Jian, Wang Xuejie, Wang Liying, Bai Weiguo, Han Xuejie, Yang Wei","doi":"10.19852/j.cnki.jtcm.2025.01.019","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To enhance the understanding of identifying personalized pharmacotherapy options in Traditional Chinese Medicine (TCM), and further support the registration of new TCM drugs.</p><p><strong>Methods: </strong>Generalized Boosted Models and XGBoost were employed to construct a classification model to identify the bad prognosis factors in resistant hypertension (RH) patients. Furthermore, we used association analysis to explore the rules of \"symptom-syndrome\" and \"symptom-herb\" for the major influencing factors, in order to summarize prescription pattern and applicable patients of TCM.</p><p><strong>Results: </strong>Patients with major adverse cardiac events mostly have complex symptoms of phlegm, stasis, deficiency and fire intermingled with each other, and finally summarized the human experience of using Chinese herbal medicine to precisely intervene in some symptoms of RH patients on the basis of conventional Western medical treatment.</p><p><strong>Conclusions: </strong>Machine learning algorithms can make full use of human use experience and evidence to save clinical trial resources and accelerate the development of TCM varieties.</p>","PeriodicalId":94119,"journal":{"name":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","volume":"45 1","pages":"192-200"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764932/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning and human use experience to identify personalized pharmacotherapy in Traditional Chinese Medicine: a case study on resistant hypertension.\",\"authors\":\"Che Qianzi, Liu Dasheng, Xiang Xinghua, Tian Yaxin, Xie Feibiao, X U Wenyuan, Liu Jian, Wang Xuejie, Wang Liying, Bai Weiguo, Han Xuejie, Yang Wei\",\"doi\":\"10.19852/j.cnki.jtcm.2025.01.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To enhance the understanding of identifying personalized pharmacotherapy options in Traditional Chinese Medicine (TCM), and further support the registration of new TCM drugs.</p><p><strong>Methods: </strong>Generalized Boosted Models and XGBoost were employed to construct a classification model to identify the bad prognosis factors in resistant hypertension (RH) patients. Furthermore, we used association analysis to explore the rules of \\\"symptom-syndrome\\\" and \\\"symptom-herb\\\" for the major influencing factors, in order to summarize prescription pattern and applicable patients of TCM.</p><p><strong>Results: </strong>Patients with major adverse cardiac events mostly have complex symptoms of phlegm, stasis, deficiency and fire intermingled with each other, and finally summarized the human experience of using Chinese herbal medicine to precisely intervene in some symptoms of RH patients on the basis of conventional Western medical treatment.</p><p><strong>Conclusions: </strong>Machine learning algorithms can make full use of human use experience and evidence to save clinical trial resources and accelerate the development of TCM varieties.</p>\",\"PeriodicalId\":94119,\"journal\":{\"name\":\"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan\",\"volume\":\"45 1\",\"pages\":\"192-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19852/j.cnki.jtcm.2025.01.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19852/j.cnki.jtcm.2025.01.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:提高对中医个性化药物治疗方案识别的认识,进一步支持中药新药注册。方法:采用广义boosting模型和XGBoost模型构建分类模型,识别难治性高血压(RH)患者预后不良因素。通过关联分析,探讨主要影响因素的“证-证”、“证-药”规律,总结中医处方模式及适用人群。结果:心脏重大不良事件患者多为痰、瘀、虚、火相杂的复杂症状,最后总结出在常规西药治疗的基础上,运用中草药精准干预RH患者部分症状的人类经验。结论:机器学习算法可以充分利用人的使用经验和证据,节省临床试验资源,加快中药品种的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating machine learning and human use experience to identify personalized pharmacotherapy in Traditional Chinese Medicine: a case study on resistant hypertension.

Objective: To enhance the understanding of identifying personalized pharmacotherapy options in Traditional Chinese Medicine (TCM), and further support the registration of new TCM drugs.

Methods: Generalized Boosted Models and XGBoost were employed to construct a classification model to identify the bad prognosis factors in resistant hypertension (RH) patients. Furthermore, we used association analysis to explore the rules of "symptom-syndrome" and "symptom-herb" for the major influencing factors, in order to summarize prescription pattern and applicable patients of TCM.

Results: Patients with major adverse cardiac events mostly have complex symptoms of phlegm, stasis, deficiency and fire intermingled with each other, and finally summarized the human experience of using Chinese herbal medicine to precisely intervene in some symptoms of RH patients on the basis of conventional Western medical treatment.

Conclusions: Machine learning algorithms can make full use of human use experience and evidence to save clinical trial resources and accelerate the development of TCM varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信