Dongxiao Ding, Ke Shi, Junjie Ying, Wenjun Shang, Chengli Du
{"title":"CircCNKSR2通过miRNA-138-5p/PLEK2轴促进NSCLC肿瘤发生和Warburg效应","authors":"Dongxiao Ding, Ke Shi, Junjie Ying, Wenjun Shang, Chengli Du","doi":"10.1615/CritRevEukaryotGeneExpr.2024055827","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) has a high global incidence and mortality rate. Although circRNAs have significant attention in tumor research, it's role in NSCLC is uncertain. QRT-PCR and Western blotting were utilized to quantify the expression of circCNKSR2, miR-138-5p, and PLEK2 in NSCLC tissues and cells. The characteristics and subcellular localization of circCNKSR2 were determined using RNase R analysis and qRT-PCR. In vitro functional experiments determined the biological functions of circCNKSR2. The specific binding interactions among circCNKSR2, miR-138-5p, and PLEK2 were evaluated through bioinformatics analysis, luciferase reporter, and rescue assays. In vivo xenograft model was established to examine the impact of circCNKSR2, which was significantly increased in NSCLC tissues and cells. Functional studies demonstrated that silencing circCNKSR2 significantly inhibited NSCLC malignant phenotype and Warburg effect. Bioinformatics analysis and rescue experiments verification indicated circCNKSR2 functioned as a miR-138-5p sponge, and inhibiting miR-138-5p reversed the suppressive effect of silencing circCNKSR2 in NSCLC. Additionally, PLEK2 identified as a miR-138-5p target gene. The potential regulatory role of circCNKSR2 in NSCLC progression and Warburg effect via the miR-138-5p/PLEK2 pathway was demonstrated.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"35 2","pages":"49-63"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircCNKSR2 Facilitates NSCLC Tumorigenesis and Warburg Effect via miRNA-138-5p/PLEK2 Axis.\",\"authors\":\"Dongxiao Ding, Ke Shi, Junjie Ying, Wenjun Shang, Chengli Du\",\"doi\":\"10.1615/CritRevEukaryotGeneExpr.2024055827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-small cell lung cancer (NSCLC) has a high global incidence and mortality rate. Although circRNAs have significant attention in tumor research, it's role in NSCLC is uncertain. QRT-PCR and Western blotting were utilized to quantify the expression of circCNKSR2, miR-138-5p, and PLEK2 in NSCLC tissues and cells. The characteristics and subcellular localization of circCNKSR2 were determined using RNase R analysis and qRT-PCR. In vitro functional experiments determined the biological functions of circCNKSR2. The specific binding interactions among circCNKSR2, miR-138-5p, and PLEK2 were evaluated through bioinformatics analysis, luciferase reporter, and rescue assays. In vivo xenograft model was established to examine the impact of circCNKSR2, which was significantly increased in NSCLC tissues and cells. Functional studies demonstrated that silencing circCNKSR2 significantly inhibited NSCLC malignant phenotype and Warburg effect. Bioinformatics analysis and rescue experiments verification indicated circCNKSR2 functioned as a miR-138-5p sponge, and inhibiting miR-138-5p reversed the suppressive effect of silencing circCNKSR2 in NSCLC. Additionally, PLEK2 identified as a miR-138-5p target gene. The potential regulatory role of circCNKSR2 in NSCLC progression and Warburg effect via the miR-138-5p/PLEK2 pathway was demonstrated.</p>\",\"PeriodicalId\":56317,\"journal\":{\"name\":\"Critical Reviews in Eukaryotic Gene Expression\",\"volume\":\"35 2\",\"pages\":\"49-63\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Eukaryotic Gene Expression\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2024055827\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2024055827","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
CircCNKSR2 Facilitates NSCLC Tumorigenesis and Warburg Effect via miRNA-138-5p/PLEK2 Axis.
Non-small cell lung cancer (NSCLC) has a high global incidence and mortality rate. Although circRNAs have significant attention in tumor research, it's role in NSCLC is uncertain. QRT-PCR and Western blotting were utilized to quantify the expression of circCNKSR2, miR-138-5p, and PLEK2 in NSCLC tissues and cells. The characteristics and subcellular localization of circCNKSR2 were determined using RNase R analysis and qRT-PCR. In vitro functional experiments determined the biological functions of circCNKSR2. The specific binding interactions among circCNKSR2, miR-138-5p, and PLEK2 were evaluated through bioinformatics analysis, luciferase reporter, and rescue assays. In vivo xenograft model was established to examine the impact of circCNKSR2, which was significantly increased in NSCLC tissues and cells. Functional studies demonstrated that silencing circCNKSR2 significantly inhibited NSCLC malignant phenotype and Warburg effect. Bioinformatics analysis and rescue experiments verification indicated circCNKSR2 functioned as a miR-138-5p sponge, and inhibiting miR-138-5p reversed the suppressive effect of silencing circCNKSR2 in NSCLC. Additionally, PLEK2 identified as a miR-138-5p target gene. The potential regulatory role of circCNKSR2 in NSCLC progression and Warburg effect via the miR-138-5p/PLEK2 pathway was demonstrated.
期刊介绍:
Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource.
Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.