{"title":"密螺旋体通过toll样受体2激活NF-κB通路。","authors":"Eitoyo Kokubu, Yutaro Ando, Yuichiro Kikuchi, Hideo Yonezawa, Kazuyuki Ishihara","doi":"10.2209/tdcpublication.2024-0023","DOIUrl":null,"url":null,"abstract":"<p><p>Treponema denticola is frequently isolated together with Porphyromonas gingivalis from the lesions seen in cases of chronic periodontitis and is considered a major pathogen of this disease. It has several virulence factors, including a major surface protein (Msp) and a major surface protease, dentilisin. The effect of these virulence factors on the host immune response remains to be elucidated, however. Toll-like receptors (TLRs) in the host can recognize pathogen-associated molecular patterns. Bacteria stimulate TLRs and activate the pro-inflammatory nuclear factor-kappa B pathway. Therefore, the aim of this study was to investigate the effect of T. denticola on TLR pathways. Toll-like receptor 4 and TLR2 reporter cell lines, which secrete alkaline phosphatase in response to TLR signals, were infected with the T. denticola wild type, an Msp-deficient mutant, a dentilisin-deficient mutant, or their extracts obtained via sonication. Signals from TLR2 or TLR4 cells were evaluated by alkaline phosphatase activity. Toll-like receptor 2 signals were detected in all T. denticola strains and sonication extracts, while no TLR4 signal was detected. Infection with the dentilisin-deficient mutant induced the strongest TLR2 signal among the strains. Sonication extracts of the wild type and Msp-deficient mutant showed the same level of TLR2 signaling. The TLR2 signal in the sonication extracts from the wild type was inhibited by Sparstolonin B, an antagonist of TLR2, in a dose-dependent manner. These results indicate that T. denticola is recognized by epithelial cells mainly via TLR2. The outer sheath structure may conceal potential ligands for TLR2.</p>","PeriodicalId":45490,"journal":{"name":"Bulletin of Tokyo Dental College","volume":" ","pages":"41-50"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treponema Denticola Activates NF-κB Pathway via Toll-like Receptor 2.\",\"authors\":\"Eitoyo Kokubu, Yutaro Ando, Yuichiro Kikuchi, Hideo Yonezawa, Kazuyuki Ishihara\",\"doi\":\"10.2209/tdcpublication.2024-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treponema denticola is frequently isolated together with Porphyromonas gingivalis from the lesions seen in cases of chronic periodontitis and is considered a major pathogen of this disease. It has several virulence factors, including a major surface protein (Msp) and a major surface protease, dentilisin. The effect of these virulence factors on the host immune response remains to be elucidated, however. Toll-like receptors (TLRs) in the host can recognize pathogen-associated molecular patterns. Bacteria stimulate TLRs and activate the pro-inflammatory nuclear factor-kappa B pathway. Therefore, the aim of this study was to investigate the effect of T. denticola on TLR pathways. Toll-like receptor 4 and TLR2 reporter cell lines, which secrete alkaline phosphatase in response to TLR signals, were infected with the T. denticola wild type, an Msp-deficient mutant, a dentilisin-deficient mutant, or their extracts obtained via sonication. Signals from TLR2 or TLR4 cells were evaluated by alkaline phosphatase activity. Toll-like receptor 2 signals were detected in all T. denticola strains and sonication extracts, while no TLR4 signal was detected. Infection with the dentilisin-deficient mutant induced the strongest TLR2 signal among the strains. Sonication extracts of the wild type and Msp-deficient mutant showed the same level of TLR2 signaling. The TLR2 signal in the sonication extracts from the wild type was inhibited by Sparstolonin B, an antagonist of TLR2, in a dose-dependent manner. These results indicate that T. denticola is recognized by epithelial cells mainly via TLR2. The outer sheath structure may conceal potential ligands for TLR2.</p>\",\"PeriodicalId\":45490,\"journal\":{\"name\":\"Bulletin of Tokyo Dental College\",\"volume\":\" \",\"pages\":\"41-50\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Tokyo Dental College\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2209/tdcpublication.2024-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Tokyo Dental College","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2209/tdcpublication.2024-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Treponema Denticola Activates NF-κB Pathway via Toll-like Receptor 2.
Treponema denticola is frequently isolated together with Porphyromonas gingivalis from the lesions seen in cases of chronic periodontitis and is considered a major pathogen of this disease. It has several virulence factors, including a major surface protein (Msp) and a major surface protease, dentilisin. The effect of these virulence factors on the host immune response remains to be elucidated, however. Toll-like receptors (TLRs) in the host can recognize pathogen-associated molecular patterns. Bacteria stimulate TLRs and activate the pro-inflammatory nuclear factor-kappa B pathway. Therefore, the aim of this study was to investigate the effect of T. denticola on TLR pathways. Toll-like receptor 4 and TLR2 reporter cell lines, which secrete alkaline phosphatase in response to TLR signals, were infected with the T. denticola wild type, an Msp-deficient mutant, a dentilisin-deficient mutant, or their extracts obtained via sonication. Signals from TLR2 or TLR4 cells were evaluated by alkaline phosphatase activity. Toll-like receptor 2 signals were detected in all T. denticola strains and sonication extracts, while no TLR4 signal was detected. Infection with the dentilisin-deficient mutant induced the strongest TLR2 signal among the strains. Sonication extracts of the wild type and Msp-deficient mutant showed the same level of TLR2 signaling. The TLR2 signal in the sonication extracts from the wild type was inhibited by Sparstolonin B, an antagonist of TLR2, in a dose-dependent manner. These results indicate that T. denticola is recognized by epithelial cells mainly via TLR2. The outer sheath structure may conceal potential ligands for TLR2.