系统发育最小描述长度:基于算法复杂度的最优性准则。

IF 3.9 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Cladistics Pub Date : 2025-02-16 DOI:10.1111/cla.12603
Ward C. Wheeler, Andres Varón
{"title":"系统发育最小描述长度:基于算法复杂度的最优性准则。","authors":"Ward C. Wheeler,&nbsp;Andres Varón","doi":"10.1111/cla.12603","DOIUrl":null,"url":null,"abstract":"<p>Phylogenetic minimum description length (PMDL) is proposed as an optimality criterion for phylogenetic analysis. PMDL is based on algorithmic (Kolmogorov) information and the minimum description length principle. This criterion generates natural weighting functions (i.e. not being externally specified) for a diversity of phylogenetic graph, data and model types. PMDL is a generalized criterion that converges on existing forms of inference (i.e. parsimony, likelihood, Bayesian) in specific circumstances. Furthermore, as opposed to existing criteria, PMDL includes graph complexity allowing for the competition of hypotheses with myriad types of phylogenetic graphs (e.g. trees, networks, forests). Owing to its compound nature, PMDL allows for analytical model choice along with phylogenetic graph hypothesis while avoiding over-parameterization. Although uncomputable, heuristic methods are presented for the calculation of upper bounds on the algorithmic information content of a phylogenetic hypothesis. Examples are presented demonstrating the approach.</p>","PeriodicalId":50688,"journal":{"name":"Cladistics","volume":"41 2","pages":"193-211"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic minimum description length: an optimality criterion based on algorithmic complexity\",\"authors\":\"Ward C. Wheeler,&nbsp;Andres Varón\",\"doi\":\"10.1111/cla.12603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phylogenetic minimum description length (PMDL) is proposed as an optimality criterion for phylogenetic analysis. PMDL is based on algorithmic (Kolmogorov) information and the minimum description length principle. This criterion generates natural weighting functions (i.e. not being externally specified) for a diversity of phylogenetic graph, data and model types. PMDL is a generalized criterion that converges on existing forms of inference (i.e. parsimony, likelihood, Bayesian) in specific circumstances. Furthermore, as opposed to existing criteria, PMDL includes graph complexity allowing for the competition of hypotheses with myriad types of phylogenetic graphs (e.g. trees, networks, forests). Owing to its compound nature, PMDL allows for analytical model choice along with phylogenetic graph hypothesis while avoiding over-parameterization. Although uncomputable, heuristic methods are presented for the calculation of upper bounds on the algorithmic information content of a phylogenetic hypothesis. Examples are presented demonstrating the approach.</p>\",\"PeriodicalId\":50688,\"journal\":{\"name\":\"Cladistics\",\"volume\":\"41 2\",\"pages\":\"193-211\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cladistics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cla.12603\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cladistics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cla.12603","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

提出了系统发育最小描述长度(PMDL)作为系统发育分析的最优性准则。PMDL基于算法(Kolmogorov)信息和最小描述长度原则。该标准为多种系统发育图、数据和模型类型生成自然加权函数(即不被外部指定)。PMDL是在特定情况下收敛于现有推理形式(即简约、似然、贝叶斯)的广义准则。此外,与现有标准相反,PMDL包括图的复杂性,允许与无数类型的系统发育图(如树、网络、森林)竞争假设。由于其复合性质,PMDL允许分析模型选择以及系统发育图假设,同时避免过度参数化。虽然不可计算,启发式方法提出计算上界的算法信息内容的系统发育假设。给出了示例来演示该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogenetic minimum description length: an optimality criterion based on algorithmic complexity

Phylogenetic minimum description length (PMDL) is proposed as an optimality criterion for phylogenetic analysis. PMDL is based on algorithmic (Kolmogorov) information and the minimum description length principle. This criterion generates natural weighting functions (i.e. not being externally specified) for a diversity of phylogenetic graph, data and model types. PMDL is a generalized criterion that converges on existing forms of inference (i.e. parsimony, likelihood, Bayesian) in specific circumstances. Furthermore, as opposed to existing criteria, PMDL includes graph complexity allowing for the competition of hypotheses with myriad types of phylogenetic graphs (e.g. trees, networks, forests). Owing to its compound nature, PMDL allows for analytical model choice along with phylogenetic graph hypothesis while avoiding over-parameterization. Although uncomputable, heuristic methods are presented for the calculation of upper bounds on the algorithmic information content of a phylogenetic hypothesis. Examples are presented demonstrating the approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cladistics
Cladistics 生物-进化生物学
CiteScore
8.60
自引率
5.60%
发文量
34
期刊介绍: Cladistics publishes high quality research papers on systematics, encouraging debate on all aspects of the field, from philosophy, theory and methodology to empirical studies and applications in biogeography, coevolution, conservation biology, ontogeny, genomics and paleontology. Cladistics is read by scientists working in the research fields of evolution, systematics and integrative biology and enjoys a consistently high position in the ISI® rankings for evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信