食管癌预后模型的进展与挑战:综述与展望。

IF 2.5 4区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Jia Chen, Qi-Chang Xing
{"title":"食管癌预后模型的进展与挑战:综述与展望。","authors":"Jia Chen, Qi-Chang Xing","doi":"10.4251/wjgo.v17.i2.101379","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we comment on the article published by Yu <i>et al</i>. By employing LASSO regression and Cox proportional hazard models, the article identified nine significant variables affecting survival, including body mass index, Karnofsky performance status, and tumor-node-metastasis staging. We firmly concur with Yu <i>et al</i> regarding the vital significance of clinical prediction models (CPMs), including logistic regression and Cox regression for assessment in esophageal carcinoma (EC). However, the nomogram's limitations and the complexities of integrating genetic factors pose challenges. The integration of immunological data with advanced statistics offers new research directions. High-throughput sequencing and big data, facilitated by machine learning, have revolutionized cancer research but require substantial computational resources. The future of CPMs in EC depends on leveraging these technologies to improve predictive accuracy and clinical application, addressing the need for larger datasets, patient-reported outcomes, and regular updates for clinical relevance.</p>","PeriodicalId":23762,"journal":{"name":"World Journal of Gastrointestinal Oncology","volume":"17 2","pages":"101379"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancements and challenges in esophageal carcinoma prognostic models: A comprehensive review and future directions.\",\"authors\":\"Jia Chen, Qi-Chang Xing\",\"doi\":\"10.4251/wjgo.v17.i2.101379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we comment on the article published by Yu <i>et al</i>. By employing LASSO regression and Cox proportional hazard models, the article identified nine significant variables affecting survival, including body mass index, Karnofsky performance status, and tumor-node-metastasis staging. We firmly concur with Yu <i>et al</i> regarding the vital significance of clinical prediction models (CPMs), including logistic regression and Cox regression for assessment in esophageal carcinoma (EC). However, the nomogram's limitations and the complexities of integrating genetic factors pose challenges. The integration of immunological data with advanced statistics offers new research directions. High-throughput sequencing and big data, facilitated by machine learning, have revolutionized cancer research but require substantial computational resources. The future of CPMs in EC depends on leveraging these technologies to improve predictive accuracy and clinical application, addressing the need for larger datasets, patient-reported outcomes, and regular updates for clinical relevance.</p>\",\"PeriodicalId\":23762,\"journal\":{\"name\":\"World Journal of Gastrointestinal Oncology\",\"volume\":\"17 2\",\"pages\":\"101379\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastrointestinal Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4251/wjgo.v17.i2.101379\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastrointestinal Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4251/wjgo.v17.i2.101379","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对Yu等人发表的文章进行评论。通过LASSO回归和Cox比例风险模型,本文确定了9个影响生存的显著变量,包括体重指数、Karnofsky性能状态和肿瘤-淋巴结-转移分期。我们非常赞同Yu等人关于临床预测模型(CPMs)的重要意义,包括logistic回归和Cox回归评估食管癌(EC)。然而,nomogram的局限性和整合遗传因素的复杂性带来了挑战。免疫学数据与先进统计学的结合提供了新的研究方向。在机器学习的推动下,高通量测序和大数据已经彻底改变了癌症研究,但需要大量的计算资源。cpm在EC中的未来取决于利用这些技术来提高预测准确性和临床应用,解决对更大数据集、患者报告结果和临床相关性定期更新的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements and challenges in esophageal carcinoma prognostic models: A comprehensive review and future directions.

In this article, we comment on the article published by Yu et al. By employing LASSO regression and Cox proportional hazard models, the article identified nine significant variables affecting survival, including body mass index, Karnofsky performance status, and tumor-node-metastasis staging. We firmly concur with Yu et al regarding the vital significance of clinical prediction models (CPMs), including logistic regression and Cox regression for assessment in esophageal carcinoma (EC). However, the nomogram's limitations and the complexities of integrating genetic factors pose challenges. The integration of immunological data with advanced statistics offers new research directions. High-throughput sequencing and big data, facilitated by machine learning, have revolutionized cancer research but require substantial computational resources. The future of CPMs in EC depends on leveraging these technologies to improve predictive accuracy and clinical application, addressing the need for larger datasets, patient-reported outcomes, and regular updates for clinical relevance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Gastrointestinal Oncology
World Journal of Gastrointestinal Oncology Medicine-Gastroenterology
CiteScore
4.20
自引率
3.30%
发文量
1082
期刊介绍: The World Journal of Gastrointestinal Oncology (WJGO) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of gastrointestinal oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信