两步顺序决策任务行为中持久性和启发式导向探索的特征。

Computational psychiatry (Cambridge, Mass.) Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.5334/cpsy.101
Angela Mariele Brands, David Mathar, Jan Peters
{"title":"两步顺序决策任务行为中持久性和启发式导向探索的特征。","authors":"Angela Mariele Brands, David Mathar, Jan Peters","doi":"10.5334/cpsy.101","DOIUrl":null,"url":null,"abstract":"<p><p>Processes formalized in classic Reinforcement Learning (RL) theory, such as model-based (MB) control, habit formation, and exploration have proven fertile in cognitive and computational neuroscience, as well as computational psychiatry. Dysregulations in MB control and exploration and their neurocomputational underpinnings play a key role across several psychiatric disorders. Yet, computational accounts mostly study these processes in isolation. The current study extended standard hybrid models of a widely-used sequential RL-task (two-step task; TST) employed to measure MB control. We implemented and compared different computational model extensions for this task to quantify potential exploration and perseveration mechanisms. In two independent data sets spanning two different variants of the task, an extended hybrid RL model with a higher-order perseveration and heuristic-based exploration mechanism provided the best fit. While a simpler model with complex perseveration only, was equally well equipped to describe the data, we found a robust positive effect of directed exploration on choice probabilities in stage one of the task. Posterior predictive checks further showed that the extended model reproduced choice patterns present in both data sets. Results are discussed with respect to implications for computational psychiatry and the search for neurocognitive endophenotypes.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"9 1","pages":"39-62"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827566/pdf/","citationCount":"0","resultStr":"{\"title\":\"Signatures of Perseveration and Heuristic-Based Directed Exploration in Two-Step Sequential Decision Task Behaviour.\",\"authors\":\"Angela Mariele Brands, David Mathar, Jan Peters\",\"doi\":\"10.5334/cpsy.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Processes formalized in classic Reinforcement Learning (RL) theory, such as model-based (MB) control, habit formation, and exploration have proven fertile in cognitive and computational neuroscience, as well as computational psychiatry. Dysregulations in MB control and exploration and their neurocomputational underpinnings play a key role across several psychiatric disorders. Yet, computational accounts mostly study these processes in isolation. The current study extended standard hybrid models of a widely-used sequential RL-task (two-step task; TST) employed to measure MB control. We implemented and compared different computational model extensions for this task to quantify potential exploration and perseveration mechanisms. In two independent data sets spanning two different variants of the task, an extended hybrid RL model with a higher-order perseveration and heuristic-based exploration mechanism provided the best fit. While a simpler model with complex perseveration only, was equally well equipped to describe the data, we found a robust positive effect of directed exploration on choice probabilities in stage one of the task. Posterior predictive checks further showed that the extended model reproduced choice patterns present in both data sets. Results are discussed with respect to implications for computational psychiatry and the search for neurocognitive endophenotypes.</p>\",\"PeriodicalId\":72664,\"journal\":{\"name\":\"Computational psychiatry (Cambridge, Mass.)\",\"volume\":\"9 1\",\"pages\":\"39-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827566/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational psychiatry (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/cpsy.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational psychiatry (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/cpsy.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在经典强化学习(RL)理论中形式化的过程,如基于模型(MB)的控制,习惯形成和探索,在认知和计算神经科学以及计算精神病学中被证明是肥沃的。MB控制和探索的失调及其神经计算基础在几种精神疾病中起着关键作用。然而,计算帐目主要是孤立地研究这些过程。本研究扩展了广泛使用的顺序rl任务的标准混合模型(两步任务;TST)测量MB控制。我们实现并比较了该任务的不同计算模型扩展,以量化潜在的探索和持久机制。在两个独立的数据集中,一个具有高阶持久性和基于启发式的探索机制的扩展混合RL模型提供了最佳拟合。虽然一个简单的模型只有复杂的毅力,同样很好地描述了数据,我们发现在任务的第一阶段,定向探索对选择概率有一个强大的积极影响。后验预测检验进一步表明,扩展模型再现了两个数据集中存在的选择模式。结果讨论了对计算精神病学的影响和神经认知内表型的搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signatures of Perseveration and Heuristic-Based Directed Exploration in Two-Step Sequential Decision Task Behaviour.

Processes formalized in classic Reinforcement Learning (RL) theory, such as model-based (MB) control, habit formation, and exploration have proven fertile in cognitive and computational neuroscience, as well as computational psychiatry. Dysregulations in MB control and exploration and their neurocomputational underpinnings play a key role across several psychiatric disorders. Yet, computational accounts mostly study these processes in isolation. The current study extended standard hybrid models of a widely-used sequential RL-task (two-step task; TST) employed to measure MB control. We implemented and compared different computational model extensions for this task to quantify potential exploration and perseveration mechanisms. In two independent data sets spanning two different variants of the task, an extended hybrid RL model with a higher-order perseveration and heuristic-based exploration mechanism provided the best fit. While a simpler model with complex perseveration only, was equally well equipped to describe the data, we found a robust positive effect of directed exploration on choice probabilities in stage one of the task. Posterior predictive checks further showed that the extended model reproduced choice patterns present in both data sets. Results are discussed with respect to implications for computational psychiatry and the search for neurocognitive endophenotypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信