Abraham Ontiveros-Cisneros, Jule Salfeld, Bao-Jian Ding, Hong-Lei Wang, Oliver Moss, Magne Friberg, Alex Van Moerkercke, Christer Löfstedt, Olivier Van Aken
{"title":"植物作为生产蚜虫性信息素内酯的生物工厂。","authors":"Abraham Ontiveros-Cisneros, Jule Salfeld, Bao-Jian Ding, Hong-Lei Wang, Oliver Moss, Magne Friberg, Alex Van Moerkercke, Christer Löfstedt, Olivier Van Aken","doi":"10.1111/ppl.70110","DOIUrl":null,"url":null,"abstract":"<p><p>Aphids cause massive agricultural losses through direct damage or as pathogen vectors. Control often relies on insecticides, which are expensive and not selective. An interesting alternative is to use aphid sex pheromones nepetalactone (NON) and nepetalactol (NOL) to interfere with aphid mating or attract aphid predators. Here, we explore production of these compounds in plants, as their precursors can be derived from mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. By introducing six genes, including a major latex protein-like (MLPL) enzyme, we engineered a functional nepetalactol biosynthetic pathway into plants. Transient expression of these enzymes in N. benthamiana caused production of nepetalactone, without the need for external supplementation with substrates. Targeting all six enzymes into the chloroplast appeared to result in higher NON yields than just chloroplast-targeting the first two enzymes. We could not detect NOL, suggesting it is rapidly oxidised to NON. In addition, we produced NON in stably transformed Camelina sativa (Camelina) lines. Interestingly, the specific NON enantiomer was different in N. benthamiana compared to in Camelina, indicating the value of different platforms for producing specific isoforms. This opens possibilities for using plants as green factories of pheromones for baits or as pheromone dispensers that interfere with insect behaviour.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70110"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plants as biofactories for production of the aphid sex pheromone nepetalactone.\",\"authors\":\"Abraham Ontiveros-Cisneros, Jule Salfeld, Bao-Jian Ding, Hong-Lei Wang, Oliver Moss, Magne Friberg, Alex Van Moerkercke, Christer Löfstedt, Olivier Van Aken\",\"doi\":\"10.1111/ppl.70110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aphids cause massive agricultural losses through direct damage or as pathogen vectors. Control often relies on insecticides, which are expensive and not selective. An interesting alternative is to use aphid sex pheromones nepetalactone (NON) and nepetalactol (NOL) to interfere with aphid mating or attract aphid predators. Here, we explore production of these compounds in plants, as their precursors can be derived from mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. By introducing six genes, including a major latex protein-like (MLPL) enzyme, we engineered a functional nepetalactol biosynthetic pathway into plants. Transient expression of these enzymes in N. benthamiana caused production of nepetalactone, without the need for external supplementation with substrates. Targeting all six enzymes into the chloroplast appeared to result in higher NON yields than just chloroplast-targeting the first two enzymes. We could not detect NOL, suggesting it is rapidly oxidised to NON. In addition, we produced NON in stably transformed Camelina sativa (Camelina) lines. Interestingly, the specific NON enantiomer was different in N. benthamiana compared to in Camelina, indicating the value of different platforms for producing specific isoforms. This opens possibilities for using plants as green factories of pheromones for baits or as pheromone dispensers that interfere with insect behaviour.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70110\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70110\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70110","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plants as biofactories for production of the aphid sex pheromone nepetalactone.
Aphids cause massive agricultural losses through direct damage or as pathogen vectors. Control often relies on insecticides, which are expensive and not selective. An interesting alternative is to use aphid sex pheromones nepetalactone (NON) and nepetalactol (NOL) to interfere with aphid mating or attract aphid predators. Here, we explore production of these compounds in plants, as their precursors can be derived from mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. By introducing six genes, including a major latex protein-like (MLPL) enzyme, we engineered a functional nepetalactol biosynthetic pathway into plants. Transient expression of these enzymes in N. benthamiana caused production of nepetalactone, without the need for external supplementation with substrates. Targeting all six enzymes into the chloroplast appeared to result in higher NON yields than just chloroplast-targeting the first two enzymes. We could not detect NOL, suggesting it is rapidly oxidised to NON. In addition, we produced NON in stably transformed Camelina sativa (Camelina) lines. Interestingly, the specific NON enantiomer was different in N. benthamiana compared to in Camelina, indicating the value of different platforms for producing specific isoforms. This opens possibilities for using plants as green factories of pheromones for baits or as pheromone dispensers that interfere with insect behaviour.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.