Robert J Holtackers, Augustin C Ogier, Ludovica Romanin, Estelle Tenisch, Isabel Montón Quesada, Ruud B van Heeswijk, Christopher W Roy, Jérôme Yerly, Milan Prsa, Matthias Stuber
{"title":"我们能降到多低?获取持续时间对1.5T自由运行心脏和呼吸运动分辨率5D全心MRI心脏容量和功能测量的影响。","authors":"Robert J Holtackers, Augustin C Ogier, Ludovica Romanin, Estelle Tenisch, Isabel Montón Quesada, Ruud B van Heeswijk, Christopher W Roy, Jérôme Yerly, Milan Prsa, Matthias Stuber","doi":"10.1016/j.jocmr.2025.101863","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac volumes and function using two-dimensional (2D) breath-held cine imaging. This technique, however, requires a reliable electrocardiogram (ECG) signal, repetitive breath-holds, and the time-consuming and proficiency-demanding planning of cardiac views. Recently, a free-running framework has been developed for cardiac and respiratory motion-resolved five-dimensional (5D) whole-heart imaging without the need for an ECG signal, repetitive breath-holds, and meticulous plan scanning. In this study, we investigate the impact of acquisition time on cardiac volumetric and functional measurements, when using free-running imaging, compared to reference standard 2D cine imaging.</p><p><strong>Methods: </strong>Sixteen healthy adult volunteers underwent CMR at 1.5T, including standard 2D breath-held cine imaging and free-running imaging using acquisition durations ranging from 1 to 6 min in randomized order. All datasets were anonymized and analyzed for left-ventricular end-systolic volume (ESV) and end-diastolic volume (EDV), as well as ejection fraction (EF). In a subset of data, intra- and inter-observer agreement was assessed. In addition, image quality and observer confidence were scored using a 4-point Likert scale. Finally, acquisition efficiency was reported for both imaging techniques, which was defined as the time required for data sampling divided by the total scan time.</p><p><strong>Results: </strong>No significant differences in left-ventricular EDV and ESV were found between free-running imaging for 1, 2, 3, 5, and 6 min and standard 2D breath-held cine imaging. Biases in EDV ranged from -2.4 to -7.4 mL, while biases in ESV ranged from -3.8 to 2.1 mL. No significant differences in EF were found between free-running imaging of any acquisition duration and standard 2D breath-held cine imaging. Biases in EF ranged from -2.8% to 0.94%. Both image quality and observer confidence in free-running imaging improved when the acquisition duration increased. However, they were always lower than standard 2D breath-held cine imaging. Acquisition efficiency improved from 13% for standard 2D cine imaging to 50% or higher for free-running imaging.</p><p><strong>Conclusion: </strong>Free-running CMR with an acquisition duration as short as 1min can provide left-ventricular cardiac volumes and EF comparable to standard 2D breath-held cine imaging, albeit at the expense of both image quality and observer confidence.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101863"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019821/pdf/","citationCount":"0","resultStr":"{\"title\":\"How low can we go? The effect of acquisition duration on cardiac volume and function measurements in free-running cardiac and respiratory motion-resolved five-dimensional whole-heart cine magnetic resonance imaging at 1.5T.\",\"authors\":\"Robert J Holtackers, Augustin C Ogier, Ludovica Romanin, Estelle Tenisch, Isabel Montón Quesada, Ruud B van Heeswijk, Christopher W Roy, Jérôme Yerly, Milan Prsa, Matthias Stuber\",\"doi\":\"10.1016/j.jocmr.2025.101863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac volumes and function using two-dimensional (2D) breath-held cine imaging. This technique, however, requires a reliable electrocardiogram (ECG) signal, repetitive breath-holds, and the time-consuming and proficiency-demanding planning of cardiac views. Recently, a free-running framework has been developed for cardiac and respiratory motion-resolved five-dimensional (5D) whole-heart imaging without the need for an ECG signal, repetitive breath-holds, and meticulous plan scanning. In this study, we investigate the impact of acquisition time on cardiac volumetric and functional measurements, when using free-running imaging, compared to reference standard 2D cine imaging.</p><p><strong>Methods: </strong>Sixteen healthy adult volunteers underwent CMR at 1.5T, including standard 2D breath-held cine imaging and free-running imaging using acquisition durations ranging from 1 to 6 min in randomized order. All datasets were anonymized and analyzed for left-ventricular end-systolic volume (ESV) and end-diastolic volume (EDV), as well as ejection fraction (EF). In a subset of data, intra- and inter-observer agreement was assessed. In addition, image quality and observer confidence were scored using a 4-point Likert scale. Finally, acquisition efficiency was reported for both imaging techniques, which was defined as the time required for data sampling divided by the total scan time.</p><p><strong>Results: </strong>No significant differences in left-ventricular EDV and ESV were found between free-running imaging for 1, 2, 3, 5, and 6 min and standard 2D breath-held cine imaging. Biases in EDV ranged from -2.4 to -7.4 mL, while biases in ESV ranged from -3.8 to 2.1 mL. No significant differences in EF were found between free-running imaging of any acquisition duration and standard 2D breath-held cine imaging. Biases in EF ranged from -2.8% to 0.94%. Both image quality and observer confidence in free-running imaging improved when the acquisition duration increased. However, they were always lower than standard 2D breath-held cine imaging. Acquisition efficiency improved from 13% for standard 2D cine imaging to 50% or higher for free-running imaging.</p><p><strong>Conclusion: </strong>Free-running CMR with an acquisition duration as short as 1min can provide left-ventricular cardiac volumes and EF comparable to standard 2D breath-held cine imaging, albeit at the expense of both image quality and observer confidence.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101863\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2025.101863\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101863","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
How low can we go? The effect of acquisition duration on cardiac volume and function measurements in free-running cardiac and respiratory motion-resolved five-dimensional whole-heart cine magnetic resonance imaging at 1.5T.
Background: Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac volumes and function using two-dimensional (2D) breath-held cine imaging. This technique, however, requires a reliable electrocardiogram (ECG) signal, repetitive breath-holds, and the time-consuming and proficiency-demanding planning of cardiac views. Recently, a free-running framework has been developed for cardiac and respiratory motion-resolved five-dimensional (5D) whole-heart imaging without the need for an ECG signal, repetitive breath-holds, and meticulous plan scanning. In this study, we investigate the impact of acquisition time on cardiac volumetric and functional measurements, when using free-running imaging, compared to reference standard 2D cine imaging.
Methods: Sixteen healthy adult volunteers underwent CMR at 1.5T, including standard 2D breath-held cine imaging and free-running imaging using acquisition durations ranging from 1 to 6 min in randomized order. All datasets were anonymized and analyzed for left-ventricular end-systolic volume (ESV) and end-diastolic volume (EDV), as well as ejection fraction (EF). In a subset of data, intra- and inter-observer agreement was assessed. In addition, image quality and observer confidence were scored using a 4-point Likert scale. Finally, acquisition efficiency was reported for both imaging techniques, which was defined as the time required for data sampling divided by the total scan time.
Results: No significant differences in left-ventricular EDV and ESV were found between free-running imaging for 1, 2, 3, 5, and 6 min and standard 2D breath-held cine imaging. Biases in EDV ranged from -2.4 to -7.4 mL, while biases in ESV ranged from -3.8 to 2.1 mL. No significant differences in EF were found between free-running imaging of any acquisition duration and standard 2D breath-held cine imaging. Biases in EF ranged from -2.8% to 0.94%. Both image quality and observer confidence in free-running imaging improved when the acquisition duration increased. However, they were always lower than standard 2D breath-held cine imaging. Acquisition efficiency improved from 13% for standard 2D cine imaging to 50% or higher for free-running imaging.
Conclusion: Free-running CMR with an acquisition duration as short as 1min can provide left-ventricular cardiac volumes and EF comparable to standard 2D breath-held cine imaging, albeit at the expense of both image quality and observer confidence.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.