miR-372-3p通过RhoC/ROCK途径抑制肝星状细胞活化。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI:10.1007/s10616-025-00715-9
Shiyu Ou, Xiaoling Tang, Zhongzhuan Li, Rong Ouyang, Yuan Lei, Gang Chen, Ling Du
{"title":"miR-372-3p通过RhoC/ROCK途径抑制肝星状细胞活化。","authors":"Shiyu Ou, Xiaoling Tang, Zhongzhuan Li, Rong Ouyang, Yuan Lei, Gang Chen, Ling Du","doi":"10.1007/s10616-025-00715-9","DOIUrl":null,"url":null,"abstract":"<p><p>The study was undertaken to determine the mechanism of miR-372-3p activating hepatic stellate cell (HSC). Transforming growth factor-β1 (TGF-β1) induced LX-2 cells were transfected with miR-372-3p mimics and/or RhoC overexpression vector (oe-RhoC), after which the miR-372-3 and RhoC expressions were detected and the biological functions of transfected cells were assessed. The relation between miR-372-3p and RhoC predicted online was validated using the dual-luciferase assay. Protein level of Collagen I (COL I), α-smooth muscle actin (α-SMA), and key proteins in the RhoC/ROCK pathway were determined using western blot. Activated LX-2 cells had decreased miR-372-3p and increased RhoC expression. Overexpression of miR-372-3p led to inhibited LX-2 cell proliferation, accelerated apoptosis, and decreased protein level of COL I and α-SMA, while such an expression pattern can be partially reversed by RhoC overexpression. miR-372-3p can bind and target RhoC expression. miR-372-3p inhibited RhoC expression to block the activation of the Rho/ROCK pathway and thus mediate LX-2 cell proliferation and apoptosis. miR-372-3p mediated RhoC/ROCK pathway to inhibit HSC activation.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"60"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828770/pdf/","citationCount":"0","resultStr":"{\"title\":\"miR-372-3p represses hepatic stellate cell activation via the RhoC/ROCK pathway.\",\"authors\":\"Shiyu Ou, Xiaoling Tang, Zhongzhuan Li, Rong Ouyang, Yuan Lei, Gang Chen, Ling Du\",\"doi\":\"10.1007/s10616-025-00715-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study was undertaken to determine the mechanism of miR-372-3p activating hepatic stellate cell (HSC). Transforming growth factor-β1 (TGF-β1) induced LX-2 cells were transfected with miR-372-3p mimics and/or RhoC overexpression vector (oe-RhoC), after which the miR-372-3 and RhoC expressions were detected and the biological functions of transfected cells were assessed. The relation between miR-372-3p and RhoC predicted online was validated using the dual-luciferase assay. Protein level of Collagen I (COL I), α-smooth muscle actin (α-SMA), and key proteins in the RhoC/ROCK pathway were determined using western blot. Activated LX-2 cells had decreased miR-372-3p and increased RhoC expression. Overexpression of miR-372-3p led to inhibited LX-2 cell proliferation, accelerated apoptosis, and decreased protein level of COL I and α-SMA, while such an expression pattern can be partially reversed by RhoC overexpression. miR-372-3p can bind and target RhoC expression. miR-372-3p inhibited RhoC expression to block the activation of the Rho/ROCK pathway and thus mediate LX-2 cell proliferation and apoptosis. miR-372-3p mediated RhoC/ROCK pathway to inhibit HSC activation.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 2\",\"pages\":\"60\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828770/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-025-00715-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00715-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在确定miR-372-3p激活肝星状细胞(HSC)的机制。用miR-372-3p模拟物和/或RhoC过表达载体(e-RhoC)转染转化生长因子-β1 (TGF-β1)诱导的LX-2细胞,检测miR-372-3和RhoC的表达,并评估转染细胞的生物学功能。通过双荧光素酶检测验证miR-372-3p与在线预测的RhoC之间的关系。western blot检测ⅰ型胶原蛋白(COL I)、α-平滑肌肌动蛋白(α-SMA)及RhoC/ROCK通路关键蛋白的表达水平。活化的LX-2细胞miR-372-3p降低,RhoC表达升高。过表达miR-372-3p可抑制LX-2细胞增殖,加速凋亡,降低COL I和α-SMA蛋白水平,而过表达RhoC可部分逆转这种表达模式。miR-372-3p可以结合和靶向RhoC表达。miR-372-3p抑制RhoC的表达,阻断Rho/ROCK通路的激活,从而介导LX-2细胞的增殖和凋亡。miR-372-3p介导RhoC/ROCK通路抑制HSC活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
miR-372-3p represses hepatic stellate cell activation via the RhoC/ROCK pathway.

The study was undertaken to determine the mechanism of miR-372-3p activating hepatic stellate cell (HSC). Transforming growth factor-β1 (TGF-β1) induced LX-2 cells were transfected with miR-372-3p mimics and/or RhoC overexpression vector (oe-RhoC), after which the miR-372-3 and RhoC expressions were detected and the biological functions of transfected cells were assessed. The relation between miR-372-3p and RhoC predicted online was validated using the dual-luciferase assay. Protein level of Collagen I (COL I), α-smooth muscle actin (α-SMA), and key proteins in the RhoC/ROCK pathway were determined using western blot. Activated LX-2 cells had decreased miR-372-3p and increased RhoC expression. Overexpression of miR-372-3p led to inhibited LX-2 cell proliferation, accelerated apoptosis, and decreased protein level of COL I and α-SMA, while such an expression pattern can be partially reversed by RhoC overexpression. miR-372-3p can bind and target RhoC expression. miR-372-3p inhibited RhoC expression to block the activation of the Rho/ROCK pathway and thus mediate LX-2 cell proliferation and apoptosis. miR-372-3p mediated RhoC/ROCK pathway to inhibit HSC activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信