氮磷比和光照对高磷废水中微藻除磷的影响

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-07-01 Epub Date: 2025-02-16 DOI:10.1080/09593330.2025.2464981
Yupeng Hu, Qi Li, Cong Li
{"title":"氮磷比和光照对高磷废水中微藻除磷的影响","authors":"Yupeng Hu, Qi Li, Cong Li","doi":"10.1080/09593330.2025.2464981","DOIUrl":null,"url":null,"abstract":"<p><p>The removal of phosphorus from wastewater has consistently posed a major focus in the field of wastewater treatment. Microalgae-based phosphorus removal is widely acknowledged as an effective biological approach. However, ensuring the microalgae-mediated high phosphorus concentration removal remains a persistent challenge. In this study, a kind of multicellular microalgae, <i>Klebsormidium</i> sp., was used to explore its ability to remove phosphorus in high-phosphorus wastewater. The phosphorus removal rate by <i>Klebsormidium</i> sp. in highly concentrated (>20 mgP/L) wastewater can exceed 90%. To investigate the phosphorus absorption process, various nitrogen and phosphorus concentrations along with light conditions were employed. The results showed that 50% to 80% of the total phosphorus absorbed by microalgae entered the intracellular polymer. The phosphorus concentration and light intensity did not exert any significant effects on the absorption of phosphorus by microalgae. However, the nitrogen concentration and the light-to-dark ratio significantly influenced the storage of phosphorus by microalgae. At a nitrogen concentration over 300 mgN/L, phosphorus absorption by microalgae was inhibited. A higher light-to-dark ratio increased phosphorus transfer by microalgae, while the light duration exceeds 16 h inhibited it. Microalgae have emerged as promising materials for phosphorus removal in high-phosphorus sewage, the study offering potential solutions for a cleaner and more sustainable future.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"3454-3466"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of nitrogen phosphorus ratio and light on phosphorus removal by microalgae in high-phosphorus wastewater.\",\"authors\":\"Yupeng Hu, Qi Li, Cong Li\",\"doi\":\"10.1080/09593330.2025.2464981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The removal of phosphorus from wastewater has consistently posed a major focus in the field of wastewater treatment. Microalgae-based phosphorus removal is widely acknowledged as an effective biological approach. However, ensuring the microalgae-mediated high phosphorus concentration removal remains a persistent challenge. In this study, a kind of multicellular microalgae, <i>Klebsormidium</i> sp., was used to explore its ability to remove phosphorus in high-phosphorus wastewater. The phosphorus removal rate by <i>Klebsormidium</i> sp. in highly concentrated (>20 mgP/L) wastewater can exceed 90%. To investigate the phosphorus absorption process, various nitrogen and phosphorus concentrations along with light conditions were employed. The results showed that 50% to 80% of the total phosphorus absorbed by microalgae entered the intracellular polymer. The phosphorus concentration and light intensity did not exert any significant effects on the absorption of phosphorus by microalgae. However, the nitrogen concentration and the light-to-dark ratio significantly influenced the storage of phosphorus by microalgae. At a nitrogen concentration over 300 mgN/L, phosphorus absorption by microalgae was inhibited. A higher light-to-dark ratio increased phosphorus transfer by microalgae, while the light duration exceeds 16 h inhibited it. Microalgae have emerged as promising materials for phosphorus removal in high-phosphorus sewage, the study offering potential solutions for a cleaner and more sustainable future.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"3454-3466\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2464981\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2464981","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

除磷技术一直是污水处理领域的研究热点。微藻除磷是一种有效的生物除磷方法。然而,确保微藻介导的高磷去除仍然是一个持续的挑战。本研究以多细胞微藻Klebsormidium sp.为研究对象,探讨其对高磷废水的除磷能力。克雷伯sormidium sp.对高浓度(> ~ 20mgp /L)废水的除磷率可达90%以上。在不同的氮磷浓度和光照条件下,研究了磷的吸收过程。结果表明,微藻吸收的总磷有50% ~ 80%进入胞内聚合物。磷浓度和光照强度对微藻对磷的吸收无显著影响。氮浓度和光暗比显著影响微藻对磷的储存。当氮浓度大于300 mg /L时,微藻对磷的吸收受到抑制。较高的光暗比增加了微藻对磷的转移,光照时间超过16 h则抑制了微藻对磷的转移。微藻已成为高磷污水中有前途的除磷材料,该研究为更清洁、更可持续的未来提供了潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of nitrogen phosphorus ratio and light on phosphorus removal by microalgae in high-phosphorus wastewater.

The removal of phosphorus from wastewater has consistently posed a major focus in the field of wastewater treatment. Microalgae-based phosphorus removal is widely acknowledged as an effective biological approach. However, ensuring the microalgae-mediated high phosphorus concentration removal remains a persistent challenge. In this study, a kind of multicellular microalgae, Klebsormidium sp., was used to explore its ability to remove phosphorus in high-phosphorus wastewater. The phosphorus removal rate by Klebsormidium sp. in highly concentrated (>20 mgP/L) wastewater can exceed 90%. To investigate the phosphorus absorption process, various nitrogen and phosphorus concentrations along with light conditions were employed. The results showed that 50% to 80% of the total phosphorus absorbed by microalgae entered the intracellular polymer. The phosphorus concentration and light intensity did not exert any significant effects on the absorption of phosphorus by microalgae. However, the nitrogen concentration and the light-to-dark ratio significantly influenced the storage of phosphorus by microalgae. At a nitrogen concentration over 300 mgN/L, phosphorus absorption by microalgae was inhibited. A higher light-to-dark ratio increased phosphorus transfer by microalgae, while the light duration exceeds 16 h inhibited it. Microalgae have emerged as promising materials for phosphorus removal in high-phosphorus sewage, the study offering potential solutions for a cleaner and more sustainable future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信