带电可调透镜的强度衍射层析显微镜的多模态输运[特邀]。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-01-31 eCollection Date: 2025-02-01 DOI:10.1364/BOE.545258
Zihao Zhou, Runnan Zhang, Ning Zhou, Qian Chen, Chao Zuo
{"title":"带电可调透镜的强度衍射层析显微镜的多模态输运[特邀]。","authors":"Zihao Zhou, Runnan Zhang, Ning Zhou, Qian Chen, Chao Zuo","doi":"10.1364/BOE.545258","DOIUrl":null,"url":null,"abstract":"<p><p>Optical diffraction tomography (ODT) is an important technique for three-dimensional (3D) imaging of semi-transparent biological samples, enabling volumetric visualization of living cells, cultures, and tissues without the need for exogenous dyes. However, ODT faces significant challenges in imaging complex biological specimens due to the limited specificity of refractive index (RI) and the coupled relationship between absorption and phase in image formation. Here, we present multi-modal transport of intensity diffraction tomography (MM-TIDT), a high-speed 3D microscopy technique that integrates an electrically tunable lens with modified illumination patterns to decouple phase and absorption information. Leveraging dual illumination schemes-circular and annular apertures-MM-TIDT acquires two intensity stacks, facilitating accurate phase and absorption decoupling. Based on an alternating direction method of multipliers (ADMM) framework with total variation (TV) and non-negativity regularization, our method reconstructs multi-modal 3D distributions of fluorescence and complex RI with high accuracy and robustness. Experimental validation with fluorescent polystyrene microspheres, Spirulina specimens, and DAPI-labeled C166 cells demonstrates the multi-modal imaging capability of MM-TIDT to resolve fine structural details across diverse sample types, providing a versatile platform for exploring dynamic biological processes and intricate cellular interactions.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"837-848"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828454/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-modal transport of intensity diffraction tomography microscopy with an electrically tunable lens [Invited].\",\"authors\":\"Zihao Zhou, Runnan Zhang, Ning Zhou, Qian Chen, Chao Zuo\",\"doi\":\"10.1364/BOE.545258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical diffraction tomography (ODT) is an important technique for three-dimensional (3D) imaging of semi-transparent biological samples, enabling volumetric visualization of living cells, cultures, and tissues without the need for exogenous dyes. However, ODT faces significant challenges in imaging complex biological specimens due to the limited specificity of refractive index (RI) and the coupled relationship between absorption and phase in image formation. Here, we present multi-modal transport of intensity diffraction tomography (MM-TIDT), a high-speed 3D microscopy technique that integrates an electrically tunable lens with modified illumination patterns to decouple phase and absorption information. Leveraging dual illumination schemes-circular and annular apertures-MM-TIDT acquires two intensity stacks, facilitating accurate phase and absorption decoupling. Based on an alternating direction method of multipliers (ADMM) framework with total variation (TV) and non-negativity regularization, our method reconstructs multi-modal 3D distributions of fluorescence and complex RI with high accuracy and robustness. Experimental validation with fluorescent polystyrene microspheres, Spirulina specimens, and DAPI-labeled C166 cells demonstrates the multi-modal imaging capability of MM-TIDT to resolve fine structural details across diverse sample types, providing a versatile platform for exploring dynamic biological processes and intricate cellular interactions.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 2\",\"pages\":\"837-848\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.545258\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.545258","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

光学衍射层析成像(ODT)是一种重要的技术,用于三维(3D)成像的半透明生物样品,使活细胞,培养物和组织的体积可视化,而不需要外源染料。然而,由于折射率(RI)的特异性有限以及成像过程中吸收与相位之间的耦合关系,ODT在复杂生物标本成像中面临着重大挑战。在这里,我们提出了多模态传输强度衍射层析成像(MM-TIDT),这是一种高速3D显微镜技术,它集成了一个电可调透镜和修改的照明模式,以解耦相位和吸收信息。利用双重照明方案——圆形和环形孔径——mm - tidt获得两个强度堆栈,促进准确的相位和吸收去耦。该方法基于具有全变分(TV)和非负性正则化的交替方向乘法器(ADMM)框架,以高精度和鲁棒性重建了荧光和复杂RI的多模态三维分布。用荧光聚苯乙烯微球、螺旋藻标本和dapi标记的C166细胞进行实验验证,证明了MM-TIDT的多模态成像能力,可以解决不同样品类型的精细结构细节,为探索动态生物过程和复杂的细胞相互作用提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-modal transport of intensity diffraction tomography microscopy with an electrically tunable lens [Invited].

Optical diffraction tomography (ODT) is an important technique for three-dimensional (3D) imaging of semi-transparent biological samples, enabling volumetric visualization of living cells, cultures, and tissues without the need for exogenous dyes. However, ODT faces significant challenges in imaging complex biological specimens due to the limited specificity of refractive index (RI) and the coupled relationship between absorption and phase in image formation. Here, we present multi-modal transport of intensity diffraction tomography (MM-TIDT), a high-speed 3D microscopy technique that integrates an electrically tunable lens with modified illumination patterns to decouple phase and absorption information. Leveraging dual illumination schemes-circular and annular apertures-MM-TIDT acquires two intensity stacks, facilitating accurate phase and absorption decoupling. Based on an alternating direction method of multipliers (ADMM) framework with total variation (TV) and non-negativity regularization, our method reconstructs multi-modal 3D distributions of fluorescence and complex RI with high accuracy and robustness. Experimental validation with fluorescent polystyrene microspheres, Spirulina specimens, and DAPI-labeled C166 cells demonstrates the multi-modal imaging capability of MM-TIDT to resolve fine structural details across diverse sample types, providing a versatile platform for exploring dynamic biological processes and intricate cellular interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信