区间剔除竞争风险数据下编译器随机治疗效果的工具变量估计。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujaf010
Yichen Lou, Yuqing Ma, Jianguo Sun, Peijie Wang, Zhisheng Ye
{"title":"区间剔除竞争风险数据下编译器随机治疗效果的工具变量估计。","authors":"Yichen Lou, Yuqing Ma, Jianguo Sun, Peijie Wang, Zhisheng Ye","doi":"10.1093/biomtc/ujaf010","DOIUrl":null,"url":null,"abstract":"<p><p>This paper discusses the assessment of causal treatment effects on a time-to-event outcome, a crucial part of many scientific investigations. Although some methods have been developed for the problem, they are not applicable to situations where there exist both interval censoring and competing risks. We fill in this critical gap under a class of transformation models for cumulative incidence functions by developing an instrumented variable (IV) estimation approach. The IV is a valuable tool commonly used to mitigate the impact of endogenous treatment selection and to determine causal treatment effects in an unbiased manner. The proposed method is flexible as the model includes many commonly used models such as the sub-distributional proportional odds and hazards models (ie, the Fine-Gray model) as special cases. The resulting estimator for the regression parameter is shown to be consistent and asymptotically normal. A simulation study is conducted to evaluate finite sample performance of the proposed approach and suggests that it works well in practice. It is applied to a breast cancer screening study.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instrumental variable estimation of complier casual treatment effects with interval-censored competing risks data.\",\"authors\":\"Yichen Lou, Yuqing Ma, Jianguo Sun, Peijie Wang, Zhisheng Ye\",\"doi\":\"10.1093/biomtc/ujaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper discusses the assessment of causal treatment effects on a time-to-event outcome, a crucial part of many scientific investigations. Although some methods have been developed for the problem, they are not applicable to situations where there exist both interval censoring and competing risks. We fill in this critical gap under a class of transformation models for cumulative incidence functions by developing an instrumented variable (IV) estimation approach. The IV is a valuable tool commonly used to mitigate the impact of endogenous treatment selection and to determine causal treatment effects in an unbiased manner. The proposed method is flexible as the model includes many commonly used models such as the sub-distributional proportional odds and hazards models (ie, the Fine-Gray model) as special cases. The resulting estimator for the regression parameter is shown to be consistent and asymptotically normal. A simulation study is conducted to evaluate finite sample performance of the proposed approach and suggests that it works well in practice. It is applied to a breast cancer screening study.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了因果治疗效果对事件时间结果的评估,这是许多科学调查的关键部分。虽然已经开发出一些方法来解决这一问题,但它们并不适用于同时存在区间审查和竞争风险的情况。我们通过开发一种仪器变量(IV)估计方法,在累积关联函数的一类转换模型下填补了这一关键空白。IV是一种有价值的工具,通常用于减轻内源性治疗选择的影响,并以公正的方式确定因果治疗效果。该方法采用了许多常用的模型,如子分布比例概率和风险模型(即Fine-Gray模型)作为特殊情况,具有灵活性。结果表明回归参数的估计量是一致的和渐近正态的。通过仿真研究对该方法的有限样本性能进行了评价,结果表明该方法在实际应用中取得了良好的效果。它被应用于乳腺癌筛查研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instrumental variable estimation of complier casual treatment effects with interval-censored competing risks data.

This paper discusses the assessment of causal treatment effects on a time-to-event outcome, a crucial part of many scientific investigations. Although some methods have been developed for the problem, they are not applicable to situations where there exist both interval censoring and competing risks. We fill in this critical gap under a class of transformation models for cumulative incidence functions by developing an instrumented variable (IV) estimation approach. The IV is a valuable tool commonly used to mitigate the impact of endogenous treatment selection and to determine causal treatment effects in an unbiased manner. The proposed method is flexible as the model includes many commonly used models such as the sub-distributional proportional odds and hazards models (ie, the Fine-Gray model) as special cases. The resulting estimator for the regression parameter is shown to be consistent and asymptotically normal. A simulation study is conducted to evaluate finite sample performance of the proposed approach and suggests that it works well in practice. It is applied to a breast cancer screening study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信