{"title":"光学相干断层扫描引导自动机器人开颅手术平台。","authors":"Haoyuan Li, Yongchao Wang, Wei Chen, Yanjun Zhang, Xiangsen Guo, Luke Xu, Yuerong Bao, Junxiong Zhou, Heng Sun, Yuntian Bi, Huijuan Feng, Wenjin Wang, Sen Suo, Jianbo Tang","doi":"10.1364/BOE.549260","DOIUrl":null,"url":null,"abstract":"<p><p>A transparent craniotomy window is required for optical brain imaging; however, traditional surgical preparation requires well-trained surgeons, is time-consuming, and suffers from low success rates. To address this issue, we present an automatic craniotomy platform combining optical coherence tomography (OCT) with an automated drilling machine. The OCT provides 3D skull data to guide a homemade closed-loop high-precision drill for controlled craniotomies, achieving a 100% success rate in creating small, large, and thinned windows. A synthetic transparent window was installed after skull excision. This system enables high-quality OCT angiography, velocimetry, and ultrasound imaging, offering an efficient tool for brain research.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 2","pages":"778-789"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828463/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optical coherence tomography guided automatic robotic craniotomy surgery platform.\",\"authors\":\"Haoyuan Li, Yongchao Wang, Wei Chen, Yanjun Zhang, Xiangsen Guo, Luke Xu, Yuerong Bao, Junxiong Zhou, Heng Sun, Yuntian Bi, Huijuan Feng, Wenjin Wang, Sen Suo, Jianbo Tang\",\"doi\":\"10.1364/BOE.549260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A transparent craniotomy window is required for optical brain imaging; however, traditional surgical preparation requires well-trained surgeons, is time-consuming, and suffers from low success rates. To address this issue, we present an automatic craniotomy platform combining optical coherence tomography (OCT) with an automated drilling machine. The OCT provides 3D skull data to guide a homemade closed-loop high-precision drill for controlled craniotomies, achieving a 100% success rate in creating small, large, and thinned windows. A synthetic transparent window was installed after skull excision. This system enables high-quality OCT angiography, velocimetry, and ultrasound imaging, offering an efficient tool for brain research.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 2\",\"pages\":\"778-789\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.549260\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.549260","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Optical coherence tomography guided automatic robotic craniotomy surgery platform.
A transparent craniotomy window is required for optical brain imaging; however, traditional surgical preparation requires well-trained surgeons, is time-consuming, and suffers from low success rates. To address this issue, we present an automatic craniotomy platform combining optical coherence tomography (OCT) with an automated drilling machine. The OCT provides 3D skull data to guide a homemade closed-loop high-precision drill for controlled craniotomies, achieving a 100% success rate in creating small, large, and thinned windows. A synthetic transparent window was installed after skull excision. This system enables high-quality OCT angiography, velocimetry, and ultrasound imaging, offering an efficient tool for brain research.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.