新的三氧同位素研究揭示了大气污染化学中前所未有的臭氧-颗粒相互作用途径。

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-01-31 eCollection Date: 2025-02-11 DOI:10.1021/acsomega.4c06957
Mao-Chang Liang, Chao-Hui Huang, Mark Howard Thiemens, Sourendra Kumar Bhattacharya, Sasadhar Mahata, Yu-Jung Chen, Tai-Sone Yih
{"title":"新的三氧同位素研究揭示了大气污染化学中前所未有的臭氧-颗粒相互作用途径。","authors":"Mao-Chang Liang, Chao-Hui Huang, Mark Howard Thiemens, Sourendra Kumar Bhattacharya, Sasadhar Mahata, Yu-Jung Chen, Tai-Sone Yih","doi":"10.1021/acsomega.4c06957","DOIUrl":null,"url":null,"abstract":"<p><p>Ozone plays a fundamental role in the chemistry of the atmosphere, mediating oxidation reactions in phases and at phase boundaries. Here, we investigate the least-explored solid-phase heterogeneous processes involving ozone to understand the reaction pathways of O<sub>3</sub> with airborne aerosols. Using triple oxygen isotope ratios as tracers, we found that the ozone reaction oxidizes organic particles and produces carbon dioxide, with oxygen atoms largely from O<sub>3</sub>. Along with the formation of CO<sub>2</sub>, an equal amount of O<sub>2</sub> from water decomposition is inferred. Chemical reaction kinetics, however, is yet to be identified. One hypothetical pathway is through Criegee intermediates, formed by the reaction of ozone with aldehyde/ketone-like organic compounds (unsaturated hydrocarbons) catalyzed by metal oxides. Inclusion of the process in a chemistry-transport model could yield a significant change in the ozone budget. The study shows the importance of ozone-induced heterogeneous chemical reactions on aerosol surfaces occurring in polluted atmospheres.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 5","pages":"4388-4394"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822502/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel Triple-Oxygen Isotope Study Indicates Unprecedented Ozone-Particulate Interaction Pathways in Atmospheric Pollution Chemistry.\",\"authors\":\"Mao-Chang Liang, Chao-Hui Huang, Mark Howard Thiemens, Sourendra Kumar Bhattacharya, Sasadhar Mahata, Yu-Jung Chen, Tai-Sone Yih\",\"doi\":\"10.1021/acsomega.4c06957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ozone plays a fundamental role in the chemistry of the atmosphere, mediating oxidation reactions in phases and at phase boundaries. Here, we investigate the least-explored solid-phase heterogeneous processes involving ozone to understand the reaction pathways of O<sub>3</sub> with airborne aerosols. Using triple oxygen isotope ratios as tracers, we found that the ozone reaction oxidizes organic particles and produces carbon dioxide, with oxygen atoms largely from O<sub>3</sub>. Along with the formation of CO<sub>2</sub>, an equal amount of O<sub>2</sub> from water decomposition is inferred. Chemical reaction kinetics, however, is yet to be identified. One hypothetical pathway is through Criegee intermediates, formed by the reaction of ozone with aldehyde/ketone-like organic compounds (unsaturated hydrocarbons) catalyzed by metal oxides. Inclusion of the process in a chemistry-transport model could yield a significant change in the ozone budget. The study shows the importance of ozone-induced heterogeneous chemical reactions on aerosol surfaces occurring in polluted atmospheres.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 5\",\"pages\":\"4388-4394\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822502/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c06957\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c06957","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

臭氧在大气化学中起着基本的作用,在相和相边界处调解氧化反应。在这里,我们研究了涉及臭氧的最少被探索的固相非均相过程,以了解O3与空气中气溶胶的反应途径。使用三氧同位素比率作为示踪剂,我们发现臭氧反应氧化有机颗粒并产生二氧化碳,其中氧原子主要来自O3。随着二氧化碳的形成,从水分解中推断出等量的氧气。然而,化学反应动力学尚未确定。一种假设的途径是通过Criegee中间体,由臭氧与金属氧化物催化的醛/酮类有机化合物(不饱和碳氢化合物)反应形成。将这一过程纳入化学输运模式可能会使臭氧收支发生重大变化。该研究显示了臭氧在污染大气中引起的气溶胶表面非均相化学反应的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel Triple-Oxygen Isotope Study Indicates Unprecedented Ozone-Particulate Interaction Pathways in Atmospheric Pollution Chemistry.

Novel Triple-Oxygen Isotope Study Indicates Unprecedented Ozone-Particulate Interaction Pathways in Atmospheric Pollution Chemistry.

Novel Triple-Oxygen Isotope Study Indicates Unprecedented Ozone-Particulate Interaction Pathways in Atmospheric Pollution Chemistry.

Novel Triple-Oxygen Isotope Study Indicates Unprecedented Ozone-Particulate Interaction Pathways in Atmospheric Pollution Chemistry.

Ozone plays a fundamental role in the chemistry of the atmosphere, mediating oxidation reactions in phases and at phase boundaries. Here, we investigate the least-explored solid-phase heterogeneous processes involving ozone to understand the reaction pathways of O3 with airborne aerosols. Using triple oxygen isotope ratios as tracers, we found that the ozone reaction oxidizes organic particles and produces carbon dioxide, with oxygen atoms largely from O3. Along with the formation of CO2, an equal amount of O2 from water decomposition is inferred. Chemical reaction kinetics, however, is yet to be identified. One hypothetical pathway is through Criegee intermediates, formed by the reaction of ozone with aldehyde/ketone-like organic compounds (unsaturated hydrocarbons) catalyzed by metal oxides. Inclusion of the process in a chemistry-transport model could yield a significant change in the ozone budget. The study shows the importance of ozone-induced heterogeneous chemical reactions on aerosol surfaces occurring in polluted atmospheres.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信