Pooja Mohandas, Abdul Ajees Abdul Salam, Thripthi Nagesh Shenoy, Srinivasulu Maddasani, Santanu Kumar Pal, Channabasaveshwar V Yelamaggad
{"title":"新型中间体--4-(5-(4-(辛氧基)苯基)-1,2,4-恶二唑-3-基)苯甲酸甲酯的结构、CSD、分子对接、分子动力学和 Hirshfeld 表面分析。","authors":"Pooja Mohandas, Abdul Ajees Abdul Salam, Thripthi Nagesh Shenoy, Srinivasulu Maddasani, Santanu Kumar Pal, Channabasaveshwar V Yelamaggad","doi":"10.1021/acsomega.4c06520","DOIUrl":null,"url":null,"abstract":"<p><p>1,2,4-Oxadiazoles are well recognized for their exceptional physical, chemical, and pharmacokinetic properties, making them promising candidates for various therapeutic applications. These include treatments for cystic fibrosis, Duchenne muscular dystrophy, Alzheimer's disease, and a broad spectrum of other therapeutic interventions such as antituberculosis, anticancer, antibiotic, anti-inflammatory, and anticonvulsant activities. In this study, single crystals of a novel 1,2,4-oxadiazole derivative, methyl-4-(5-(4-(octyloxy)phenyl)-1,2,4-oxadiazol-3-yl)benzoate, were grown by a slow evaporation technique. The structural elucidation was performed using X-ray diffraction analysis, confirming the compound's crystalline structure in the triclinic system. The analysis revealed a linear conformation with bond lengths closely aligned with Cambridge Structural Database (CSD) averages, signifying high precision in the molecular structure. A detailed CSD study identified nine principal configurations of the phenyl octyloxy moiety, underscoring the structural diversity of the compound. Hirshfeld surface analysis highlighted the predominance of C-H···O and C-H···π interactions, with dispersion energy playing a critical role in stabilizing the crystal lattice. Docking studies against key microbial targets, particularly <i>E. coli</i> FabH, demonstrated superior binding energies, suggesting significant antimicrobial potential. The comprehensive suite of structural and computational analyses underscores the potential of the synthesized 1,2,4-oxadiazole derivative, which may be one of the promising candidates for antimicrobial drug development. Future <i>in vitro</i>, <i>in vivo</i> studies will be supportive in optimizing the derivative for enhanced efficacy and further elucidating its pharmacological mechanisms, paving the way for potential clinical applications. This study not only provides insights into the structural and functional properties of a novel 1,2,4-oxadiazole derivative but also highlights its promising role in antimicrobial drug discovery.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 5","pages":"4336-4352"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural, CSD, Molecular Docking, Molecular Dynamics, and Hirshfeld Surface Analysis of a New Mesogen, Methyl-4-(5-(4-(octyloxy)phenyl)-1,2,4-oxadiazol-3-yl)benzoate.\",\"authors\":\"Pooja Mohandas, Abdul Ajees Abdul Salam, Thripthi Nagesh Shenoy, Srinivasulu Maddasani, Santanu Kumar Pal, Channabasaveshwar V Yelamaggad\",\"doi\":\"10.1021/acsomega.4c06520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1,2,4-Oxadiazoles are well recognized for their exceptional physical, chemical, and pharmacokinetic properties, making them promising candidates for various therapeutic applications. These include treatments for cystic fibrosis, Duchenne muscular dystrophy, Alzheimer's disease, and a broad spectrum of other therapeutic interventions such as antituberculosis, anticancer, antibiotic, anti-inflammatory, and anticonvulsant activities. In this study, single crystals of a novel 1,2,4-oxadiazole derivative, methyl-4-(5-(4-(octyloxy)phenyl)-1,2,4-oxadiazol-3-yl)benzoate, were grown by a slow evaporation technique. The structural elucidation was performed using X-ray diffraction analysis, confirming the compound's crystalline structure in the triclinic system. The analysis revealed a linear conformation with bond lengths closely aligned with Cambridge Structural Database (CSD) averages, signifying high precision in the molecular structure. A detailed CSD study identified nine principal configurations of the phenyl octyloxy moiety, underscoring the structural diversity of the compound. Hirshfeld surface analysis highlighted the predominance of C-H···O and C-H···π interactions, with dispersion energy playing a critical role in stabilizing the crystal lattice. Docking studies against key microbial targets, particularly <i>E. coli</i> FabH, demonstrated superior binding energies, suggesting significant antimicrobial potential. The comprehensive suite of structural and computational analyses underscores the potential of the synthesized 1,2,4-oxadiazole derivative, which may be one of the promising candidates for antimicrobial drug development. Future <i>in vitro</i>, <i>in vivo</i> studies will be supportive in optimizing the derivative for enhanced efficacy and further elucidating its pharmacological mechanisms, paving the way for potential clinical applications. This study not only provides insights into the structural and functional properties of a novel 1,2,4-oxadiazole derivative but also highlights its promising role in antimicrobial drug discovery.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 5\",\"pages\":\"4336-4352\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c06520\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c06520","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural, CSD, Molecular Docking, Molecular Dynamics, and Hirshfeld Surface Analysis of a New Mesogen, Methyl-4-(5-(4-(octyloxy)phenyl)-1,2,4-oxadiazol-3-yl)benzoate.
1,2,4-Oxadiazoles are well recognized for their exceptional physical, chemical, and pharmacokinetic properties, making them promising candidates for various therapeutic applications. These include treatments for cystic fibrosis, Duchenne muscular dystrophy, Alzheimer's disease, and a broad spectrum of other therapeutic interventions such as antituberculosis, anticancer, antibiotic, anti-inflammatory, and anticonvulsant activities. In this study, single crystals of a novel 1,2,4-oxadiazole derivative, methyl-4-(5-(4-(octyloxy)phenyl)-1,2,4-oxadiazol-3-yl)benzoate, were grown by a slow evaporation technique. The structural elucidation was performed using X-ray diffraction analysis, confirming the compound's crystalline structure in the triclinic system. The analysis revealed a linear conformation with bond lengths closely aligned with Cambridge Structural Database (CSD) averages, signifying high precision in the molecular structure. A detailed CSD study identified nine principal configurations of the phenyl octyloxy moiety, underscoring the structural diversity of the compound. Hirshfeld surface analysis highlighted the predominance of C-H···O and C-H···π interactions, with dispersion energy playing a critical role in stabilizing the crystal lattice. Docking studies against key microbial targets, particularly E. coli FabH, demonstrated superior binding energies, suggesting significant antimicrobial potential. The comprehensive suite of structural and computational analyses underscores the potential of the synthesized 1,2,4-oxadiazole derivative, which may be one of the promising candidates for antimicrobial drug development. Future in vitro, in vivo studies will be supportive in optimizing the derivative for enhanced efficacy and further elucidating its pharmacological mechanisms, paving the way for potential clinical applications. This study not only provides insights into the structural and functional properties of a novel 1,2,4-oxadiazole derivative but also highlights its promising role in antimicrobial drug discovery.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.