一步计时安培法合成氮掺杂氧化石墨烯作为钠离子电池的新型阳极,具有增强的电化学性能

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Ph. D. Student MohammedMustafa Almarzoge, Prof. Dr. Metin Gencten, Assoc. Prof. Dr. Gamzenur Ozsin
{"title":"一步计时安培法合成氮掺杂氧化石墨烯作为钠离子电池的新型阳极,具有增强的电化学性能","authors":"Ph. D. Student MohammedMustafa Almarzoge,&nbsp;Prof. Dr. Metin Gencten,&nbsp;Assoc. Prof. Dr. Gamzenur Ozsin","doi":"10.1002/celc.202400564","DOIUrl":null,"url":null,"abstract":"<p>Sodium-ion batteries (NIBs) have gained significant attention in recent years due to the global abundance and cost-effectiveness of sodium, making them a promising alternative to lithium-based batteries. In this study, nitrogen-doped graphene oxide powders (NGO) have been prepared in one step by using chronoamperometric method and then have been used as anode materials for NIBs. The NGO powder surface is covalently doped by C−N formation. The synthesized powder had few layers (~3 layers) with nanocrystalline domain size (Lα) ~46 nm, and the number of sp<sup>2</sup> carbon rings was calculated to be ~18. The initial discharge capacity recorded 199.8 mAh g<sup>−1</sup> at 0.1 C rate. Besides, the capacity retention for long-term cycling of 100 cycles at 2 C rate was 91.78 %. The deduced diffusion coefficient from galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) measurements for NGO as anode in NIBs is in the range of 10<sup>−11</sup>–10<sup>−12</sup> cm<sup>2</sup> s<sup>−1</sup>. The electrochemical performance was attributed to the enhanced d-spacing of NGO up to 6.8 °A and formation large number of defects.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400564","citationCount":"0","resultStr":"{\"title\":\"One-Step Chronoamperometric Synthesized Nitrogen-Doped Graphene Oxide as a Novel Anode for Sodium-Ion Battery with an Enhanced Electrochemical Performance\",\"authors\":\"Ph. D. Student MohammedMustafa Almarzoge,&nbsp;Prof. Dr. Metin Gencten,&nbsp;Assoc. Prof. Dr. Gamzenur Ozsin\",\"doi\":\"10.1002/celc.202400564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sodium-ion batteries (NIBs) have gained significant attention in recent years due to the global abundance and cost-effectiveness of sodium, making them a promising alternative to lithium-based batteries. In this study, nitrogen-doped graphene oxide powders (NGO) have been prepared in one step by using chronoamperometric method and then have been used as anode materials for NIBs. The NGO powder surface is covalently doped by C−N formation. The synthesized powder had few layers (~3 layers) with nanocrystalline domain size (Lα) ~46 nm, and the number of sp<sup>2</sup> carbon rings was calculated to be ~18. The initial discharge capacity recorded 199.8 mAh g<sup>−1</sup> at 0.1 C rate. Besides, the capacity retention for long-term cycling of 100 cycles at 2 C rate was 91.78 %. The deduced diffusion coefficient from galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) measurements for NGO as anode in NIBs is in the range of 10<sup>−11</sup>–10<sup>−12</sup> cm<sup>2</sup> s<sup>−1</sup>. The electrochemical performance was attributed to the enhanced d-spacing of NGO up to 6.8 °A and formation large number of defects.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400564\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400564\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400564","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于钠在全球范围内的丰富和成本效益,钠离子电池(NIBs)受到了极大的关注,使其成为锂基电池的一个有前途的替代品。本研究采用计时安培法一步制备了氮掺杂氧化石墨烯粉末(NGO),并将其作为nib的负极材料。NGO粉末表面以C−N形成共价掺杂。合成的粉末层数少(~3层),纳米晶畴尺寸(Lα) ~46 nm, sp2碳环数约为~18个。在0.1 C的速率下,初始放电容量记录为199.8 mAh g−1。在2℃条件下,长期循环100次的容量保持率为91.78%。从恒流间歇滴定技术(git)和电化学阻抗谱(EIS)测量中推断出的NGO作为nib阳极的扩散系数在10−11-10−12 cm2 s−1之间。石墨烯的d-间距增大至6.8°A,并形成大量缺陷,从而提高了石墨烯的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-Step Chronoamperometric Synthesized Nitrogen-Doped Graphene Oxide as a Novel Anode for Sodium-Ion Battery with an Enhanced Electrochemical Performance

One-Step Chronoamperometric Synthesized Nitrogen-Doped Graphene Oxide as a Novel Anode for Sodium-Ion Battery with an Enhanced Electrochemical Performance

Sodium-ion batteries (NIBs) have gained significant attention in recent years due to the global abundance and cost-effectiveness of sodium, making them a promising alternative to lithium-based batteries. In this study, nitrogen-doped graphene oxide powders (NGO) have been prepared in one step by using chronoamperometric method and then have been used as anode materials for NIBs. The NGO powder surface is covalently doped by C−N formation. The synthesized powder had few layers (~3 layers) with nanocrystalline domain size (Lα) ~46 nm, and the number of sp2 carbon rings was calculated to be ~18. The initial discharge capacity recorded 199.8 mAh g−1 at 0.1 C rate. Besides, the capacity retention for long-term cycling of 100 cycles at 2 C rate was 91.78 %. The deduced diffusion coefficient from galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) measurements for NGO as anode in NIBs is in the range of 10−11–10−12 cm2 s−1. The electrochemical performance was attributed to the enhanced d-spacing of NGO up to 6.8 °A and formation large number of defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信