Xiaoxiao Li, Wei Yang, Mark Novak, Lei Zhao, Peter C. de Ruiter, Zhifeng Yang, Christian Guill
{"title":"体质量-生物量尺度调节物种对压力扰动的临界性","authors":"Xiaoxiao Li, Wei Yang, Mark Novak, Lei Zhao, Peter C. de Ruiter, Zhifeng Yang, Christian Guill","doi":"10.1111/ele.70086","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Identifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone-ness’ remain unclear. We quantified keystone-ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non-linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom-heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top-heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone-ness were weakened or reversed compared to bottom-heavy webs. Linear approximations aligned well with non-linear responses in bottom-heavy webs, but were less consistent in top-heavy webs. These findings highlight the importance of community context in shaping species' keystone-ness and informing effective conservation actions.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 2","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Body Mass–Biomass Scaling Modulates Species Keystone-Ness to Press Perturbations\",\"authors\":\"Xiaoxiao Li, Wei Yang, Mark Novak, Lei Zhao, Peter C. de Ruiter, Zhifeng Yang, Christian Guill\",\"doi\":\"10.1111/ele.70086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Identifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone-ness’ remain unclear. We quantified keystone-ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non-linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom-heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top-heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone-ness were weakened or reversed compared to bottom-heavy webs. Linear approximations aligned well with non-linear responses in bottom-heavy webs, but were less consistent in top-heavy webs. These findings highlight the importance of community context in shaping species' keystone-ness and informing effective conservation actions.</p>\\n </div>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 2\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70086\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70086","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Body Mass–Biomass Scaling Modulates Species Keystone-Ness to Press Perturbations
Identifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone-ness’ remain unclear. We quantified keystone-ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non-linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom-heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top-heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone-ness were weakened or reversed compared to bottom-heavy webs. Linear approximations aligned well with non-linear responses in bottom-heavy webs, but were less consistent in top-heavy webs. These findings highlight the importance of community context in shaping species' keystone-ness and informing effective conservation actions.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.