色氨酸代谢物犬尿氨酸在玻碳电极上的电化学氧化机理研究

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Electroanalysis Pub Date : 2025-02-17 DOI:10.1002/elan.12022
José A. M. Nascimento, José G. S. Neto, Wellington E. Rodrigues, Thomas F. F. T. dos Santos, José Eudes S. Oliveira, André P. Liesen, Vagner B. dos Santos, Severino Carlos B. Oliveira
{"title":"色氨酸代谢物犬尿氨酸在玻碳电极上的电化学氧化机理研究","authors":"José A. M. Nascimento,&nbsp;José G. S. Neto,&nbsp;Wellington E. Rodrigues,&nbsp;Thomas F. F. T. dos Santos,&nbsp;José Eudes S. Oliveira,&nbsp;André P. Liesen,&nbsp;Vagner B. dos Santos,&nbsp;Severino Carlos B. Oliveira","doi":"10.1002/elan.12022","DOIUrl":null,"url":null,"abstract":"<p>Tryptophan (TRP) in the human body is generally metabolized by two different pathways, to serotonin or via kynurenine (KYN), where the majority is consumed through the latter. Studies relate that the imbalance between these two pathways is associated with different types of diseases. This work aims to investigate for the first time the redox properties of KYN in aqueous electrolytes on glassy carbon electrode (GCE), using electrochemical techniques, cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The electrooxidation of KYN was compared with the anodic behavior of aniline and kynurenic acid. The KYN oxidation mechanism was proposed and occurs in the 2-aminobenzoyl group from a main step with the withdrawal of one electron and the formation of an intermediate cation radical (KYN<sup>+•</sup>). The KYN<sup>+•</sup> follows a dimerization and polymerization reaction, forming different electroactive products (polyKYNs) that are adsorbed on the GCE surface. The EIS data indicated that the adsorbed polyKYNs films on GCEs in a strongly acidic medium (pH = 0.3) are conductive and in a physiological medium they are resistive, hindering new subsequent reactions. All redox reactions identified were dependent on an acid–base equilibrium, since they were strongly influenced by the pH of the medium, occurring more easily in alkaline media. The diffusion coefficient of KYN was determined in phosphate buffer pH = 7.0 as 1.59 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>. The voltammetric responses of DP were also explored here for the development of a sensitive electroanalytical method for detection and quantification of KYN. For the development of the method, analytical parameters were studied, such as work concentration range, linearity, limit of detection (LOD) and quantification (LOQ), repeatability, reproducibility, and selectivity to possible interferences. A method using DPV and GCE was developed for determination of KYN in acidic medium (pH = 0.30) with a LOD of 0.43 μmol L<sup>−1</sup>.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Electrochemical Oxidation Mechanism of the Tryptophan Metabolite Kynurenine on Glassy Carbon Electrode\",\"authors\":\"José A. M. Nascimento,&nbsp;José G. S. Neto,&nbsp;Wellington E. Rodrigues,&nbsp;Thomas F. F. T. dos Santos,&nbsp;José Eudes S. Oliveira,&nbsp;André P. Liesen,&nbsp;Vagner B. dos Santos,&nbsp;Severino Carlos B. Oliveira\",\"doi\":\"10.1002/elan.12022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tryptophan (TRP) in the human body is generally metabolized by two different pathways, to serotonin or via kynurenine (KYN), where the majority is consumed through the latter. Studies relate that the imbalance between these two pathways is associated with different types of diseases. This work aims to investigate for the first time the redox properties of KYN in aqueous electrolytes on glassy carbon electrode (GCE), using electrochemical techniques, cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The electrooxidation of KYN was compared with the anodic behavior of aniline and kynurenic acid. The KYN oxidation mechanism was proposed and occurs in the 2-aminobenzoyl group from a main step with the withdrawal of one electron and the formation of an intermediate cation radical (KYN<sup>+•</sup>). The KYN<sup>+•</sup> follows a dimerization and polymerization reaction, forming different electroactive products (polyKYNs) that are adsorbed on the GCE surface. The EIS data indicated that the adsorbed polyKYNs films on GCEs in a strongly acidic medium (pH = 0.3) are conductive and in a physiological medium they are resistive, hindering new subsequent reactions. All redox reactions identified were dependent on an acid–base equilibrium, since they were strongly influenced by the pH of the medium, occurring more easily in alkaline media. The diffusion coefficient of KYN was determined in phosphate buffer pH = 7.0 as 1.59 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>. The voltammetric responses of DP were also explored here for the development of a sensitive electroanalytical method for detection and quantification of KYN. For the development of the method, analytical parameters were studied, such as work concentration range, linearity, limit of detection (LOD) and quantification (LOQ), repeatability, reproducibility, and selectivity to possible interferences. A method using DPV and GCE was developed for determination of KYN in acidic medium (pH = 0.30) with a LOD of 0.43 μmol L<sup>−1</sup>.</p>\",\"PeriodicalId\":162,\"journal\":{\"name\":\"Electroanalysis\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroanalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elan.12022\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.12022","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

人体中的色氨酸(TRP)通常通过两种不同的途径代谢,转化为血清素或通过犬尿氨酸(KYN),其中大部分通过后者消耗。研究表明,这两种途径之间的不平衡与不同类型的疾病有关。本文首次利用电化学技术、循环伏安法(CV)、差分脉冲伏安法(DPV)、方波伏安法(SWV)和电化学阻抗谱法(EIS)研究了KYN在玻碳电极(GCE)上水溶液中的氧化还原性能。将KYN的电氧化行为与苯胺和KYN酸的阳极氧化行为进行了比较。提出了KYN氧化机理,该机理发生在2-氨基苯甲酰基上,主要步骤是一个电子的退出和中间阳离子自由基(KYN+•)的形成。KYN+•经过二聚化和聚合反应,形成吸附在GCE表面的不同电活性产物(polykyn)。EIS数据表明,在强酸性介质(pH = 0.3)中,吸附在gce上的polyKYNs膜具有导电性,而在生理介质中,它们具有电阻性,阻碍了新的后续反应。所有确定的氧化还原反应都依赖于酸碱平衡,因为它们受到介质pH值的强烈影响,在碱性介质中更容易发生。在pH = 7.0的磷酸盐缓冲液中测定KYN的扩散系数为1.59 × 10−6 cm2 s−1。为了开发一种灵敏的检测和定量KYN的电分析方法,本文还探讨了DP的伏安响应。为了开发该方法,研究了分析参数,如工作浓度范围、线性、检出限(LOD)和定量限(LOQ)、重复性、再现性和对可能干扰的选择性。建立了在酸性培养基(pH = 0.30)中测定KYN的DPV - GCE法,LOD为0.43 μmol L−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study of Electrochemical Oxidation Mechanism of the Tryptophan Metabolite Kynurenine on Glassy Carbon Electrode

Study of Electrochemical Oxidation Mechanism of the Tryptophan Metabolite Kynurenine on Glassy Carbon Electrode

Tryptophan (TRP) in the human body is generally metabolized by two different pathways, to serotonin or via kynurenine (KYN), where the majority is consumed through the latter. Studies relate that the imbalance between these two pathways is associated with different types of diseases. This work aims to investigate for the first time the redox properties of KYN in aqueous electrolytes on glassy carbon electrode (GCE), using electrochemical techniques, cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The electrooxidation of KYN was compared with the anodic behavior of aniline and kynurenic acid. The KYN oxidation mechanism was proposed and occurs in the 2-aminobenzoyl group from a main step with the withdrawal of one electron and the formation of an intermediate cation radical (KYN+•). The KYN+• follows a dimerization and polymerization reaction, forming different electroactive products (polyKYNs) that are adsorbed on the GCE surface. The EIS data indicated that the adsorbed polyKYNs films on GCEs in a strongly acidic medium (pH = 0.3) are conductive and in a physiological medium they are resistive, hindering new subsequent reactions. All redox reactions identified were dependent on an acid–base equilibrium, since they were strongly influenced by the pH of the medium, occurring more easily in alkaline media. The diffusion coefficient of KYN was determined in phosphate buffer pH = 7.0 as 1.59 × 10−6 cm2 s−1. The voltammetric responses of DP were also explored here for the development of a sensitive electroanalytical method for detection and quantification of KYN. For the development of the method, analytical parameters were studied, such as work concentration range, linearity, limit of detection (LOD) and quantification (LOQ), repeatability, reproducibility, and selectivity to possible interferences. A method using DPV and GCE was developed for determination of KYN in acidic medium (pH = 0.30) with a LOD of 0.43 μmol L−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信