利用新型数据驱动技术进行精确降雨-径流建模

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Saad Sh. Sammen, Reza Mohammadpour, Karam AlSafadi, Ali Mokhtar, Shamsuddin Shahid
{"title":"利用新型数据驱动技术进行精确降雨-径流建模","authors":"Saad Sh. Sammen,&nbsp;Reza Mohammadpour,&nbsp;Karam AlSafadi,&nbsp;Ali Mokhtar,&nbsp;Shamsuddin Shahid","doi":"10.1111/jfr3.70013","DOIUrl":null,"url":null,"abstract":"<p>Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data-driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m<sup>3</sup>/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70013","citationCount":"0","resultStr":"{\"title\":\"Harnessing Novel Data-Driven Techniques for Precise Rainfall–Runoff Modeling\",\"authors\":\"Saad Sh. Sammen,&nbsp;Reza Mohammadpour,&nbsp;Karam AlSafadi,&nbsp;Ali Mokhtar,&nbsp;Shamsuddin Shahid\",\"doi\":\"10.1111/jfr3.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data-driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m<sup>3</sup>/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70013\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70013","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

降雨和径流被认为是水文循环的主要组成部分,其预报对水资源管理,尤其是水库运行具有重要意义。由于水文过程的非平稳特性和噪声的影响,开发一个精确的模型来捕捉降雨和径流之间的动态联系仍然是水资源管理中的难题和挑战。本研究采用了数据驱动技术,如数据处理分组法(GMDH)、极端学习机(ELM)以及人工神经网络(ANN)与布谷鸟搜索算法(ANN + Cuckoo)和遗传算法(ANN + GA)的两种混合算法来模拟降雨与径流的关系。为了进行综合分析,根据不同的输入组合研究了四种方案,以测试和选择最佳方案和最佳模型性能。结果表明,ELM 和 GMDH 预测径流的性能比 ANN + Cuckoo 和 ANN + GA 更准确。虽然 GMDH 预测径流的准确度更高,但 ELM 在模拟低值和高值时的表现都很可靠。根据测试数据,模型的性能可按以下顺序排列:GMDH、ELM、ANN + GA 和 ANN + CUKOO。GMDH 和 ELM 模型的均方根误差(RMSE)分别为 56.7 和 69.7 m3/s。这些较低的均方根误差值凸显了这些模型在有效应对降雨-径流模拟复杂性相关挑战方面的潜力。此外,研究结果表明,机器学习模型可作为一种简单、快速且成本低廉的方法,用于及时可靠的径流预测,有望为水库管理带来益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Novel Data-Driven Techniques for Precise Rainfall–Runoff Modeling

Harnessing Novel Data-Driven Techniques for Precise Rainfall–Runoff Modeling

Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data-driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m3/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信