Lingyan Shen, Yonggui Liu, Keyan Li, Xiaofei Ji, Xiangyu Jin
{"title":"应力波沿微接触摩擦界面的传播","authors":"Lingyan Shen, Yonggui Liu, Keyan Li, Xiaofei Ji, Xiangyu Jin","doi":"10.1007/s10338-024-00540-1","DOIUrl":null,"url":null,"abstract":"<div><p>The stress wave profile at the frictional interface is crucial for investigating the frictional process. This study modeled a brittle material interface with a micro- contact to analyze the fine stress wave structure associated with frictional slip. Employing the finite element simulation alongside the related wave theory and experiments, two new wave structures were indentified: A Mach cone symmetric to the frictional interface associated with incident plane wave propagation, and a new plane longitudinal wave generated across the entire frictional interface at the moment when the incident wave began to propagate. The time and space of its appearance implies that the overall response of the frictional interface precedes the local wave response of the medium. Consequently, a model involving characteristic line theory and the idea of Green’s function has been proposed for its occurrence. The analysis results show that these two new wave phenomena are independent of the fracture of micro-contacts at the interface; instead, the frictional interface effect may be responsible for the generation of such new wave structures. The measured wave profiles provide a proof for the existence of the new wave structures. These results display new wave phenomena, and suggest a wave profile for investigating the dynamic mechanical properties of the frictional interface.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 1","pages":"152 - 165"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-024-00540-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Stress Waves Propagation Along the Frictional Interface with a Micro-contact\",\"authors\":\"Lingyan Shen, Yonggui Liu, Keyan Li, Xiaofei Ji, Xiangyu Jin\",\"doi\":\"10.1007/s10338-024-00540-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stress wave profile at the frictional interface is crucial for investigating the frictional process. This study modeled a brittle material interface with a micro- contact to analyze the fine stress wave structure associated with frictional slip. Employing the finite element simulation alongside the related wave theory and experiments, two new wave structures were indentified: A Mach cone symmetric to the frictional interface associated with incident plane wave propagation, and a new plane longitudinal wave generated across the entire frictional interface at the moment when the incident wave began to propagate. The time and space of its appearance implies that the overall response of the frictional interface precedes the local wave response of the medium. Consequently, a model involving characteristic line theory and the idea of Green’s function has been proposed for its occurrence. The analysis results show that these two new wave phenomena are independent of the fracture of micro-contacts at the interface; instead, the frictional interface effect may be responsible for the generation of such new wave structures. The measured wave profiles provide a proof for the existence of the new wave structures. These results display new wave phenomena, and suggest a wave profile for investigating the dynamic mechanical properties of the frictional interface.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"38 1\",\"pages\":\"152 - 165\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10338-024-00540-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00540-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00540-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stress Waves Propagation Along the Frictional Interface with a Micro-contact
The stress wave profile at the frictional interface is crucial for investigating the frictional process. This study modeled a brittle material interface with a micro- contact to analyze the fine stress wave structure associated with frictional slip. Employing the finite element simulation alongside the related wave theory and experiments, two new wave structures were indentified: A Mach cone symmetric to the frictional interface associated with incident plane wave propagation, and a new plane longitudinal wave generated across the entire frictional interface at the moment when the incident wave began to propagate. The time and space of its appearance implies that the overall response of the frictional interface precedes the local wave response of the medium. Consequently, a model involving characteristic line theory and the idea of Green’s function has been proposed for its occurrence. The analysis results show that these two new wave phenomena are independent of the fracture of micro-contacts at the interface; instead, the frictional interface effect may be responsible for the generation of such new wave structures. The measured wave profiles provide a proof for the existence of the new wave structures. These results display new wave phenomena, and suggest a wave profile for investigating the dynamic mechanical properties of the frictional interface.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables