土地利用和气候变化对未来极端流量的影响:对伊朗阿尔博尔兹省和德黑兰省三个大坝流域的研究

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Mostafa Naderi, Fereshteh Talebi Ardeh, Farzaneh Abedi, Zohreh Masoumi
{"title":"土地利用和气候变化对未来极端流量的影响:对伊朗阿尔博尔兹省和德黑兰省三个大坝流域的研究","authors":"Mostafa Naderi,&nbsp;Fereshteh Talebi Ardeh,&nbsp;Farzaneh Abedi,&nbsp;Zohreh Masoumi","doi":"10.1007/s13201-025-02396-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study assesses the impact of land-use and climate change on hydrological regime of three dam watersheds (Karaj, Latian and Mamlu) in Alborz and Tehran Provinces of Iran. Daily precipitation and temperature data from CMIP6 are transiently downscaled to ten climatic stations using the LARS-WG under global warming scenarios SSP1-1.9, SSP2-4.5, and SSP5-8.5. The Cellular Automata-Markov-chain machine learning is used to simulate future land-use maps (2021–2080) by training and testing its multilayer perceptron neural network with observed land-use change during the period 1995–2015. The study area will experience warming by 0.78, 2.1, and 2.4 °C under SSP1-1.9, SSP2-4.5, and SSP5-8.5, respectively, and precipitation anomalies by +129.3, −95.6, and −54.2 mm, respectively, compared to the baseline period 1991–2014. Extreme precipitation depth will increase at all stations under SSP1-1.9. However, precipitation change depends on the storm’s return period, station, and scenario under warmer scenarios. The SWAT-predicted river flow over three watersheds will increase, compared to the baseline period, under SSP1-1.9 but decrease under SSP2-4.5 and SSP5-8.5. Among combinations of land-use and climate change scenarios, land-use scenario High under SSP1-1.9 leads to greatest annual streamflow, while no change in land-use under SSP2-4.5 results in maximum reduction in streamflow over three watersheds. Extreme flows over Karaj and Latian watersheds show no sensitivity to different land-use scenarios due to negligible land-use development in future but they still are sensitive to climate change scenarios. Meanwhile, extreme flows over Mamlu watershed show significant sensitivity to both land-use and climate change scenarios due to significant land-use change in future.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02396-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of land-use and climate change on future extreme flows: a study for three dam watersheds in Alborz and Tehran provinces of Iran\",\"authors\":\"Mostafa Naderi,&nbsp;Fereshteh Talebi Ardeh,&nbsp;Farzaneh Abedi,&nbsp;Zohreh Masoumi\",\"doi\":\"10.1007/s13201-025-02396-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study assesses the impact of land-use and climate change on hydrological regime of three dam watersheds (Karaj, Latian and Mamlu) in Alborz and Tehran Provinces of Iran. Daily precipitation and temperature data from CMIP6 are transiently downscaled to ten climatic stations using the LARS-WG under global warming scenarios SSP1-1.9, SSP2-4.5, and SSP5-8.5. The Cellular Automata-Markov-chain machine learning is used to simulate future land-use maps (2021–2080) by training and testing its multilayer perceptron neural network with observed land-use change during the period 1995–2015. The study area will experience warming by 0.78, 2.1, and 2.4 °C under SSP1-1.9, SSP2-4.5, and SSP5-8.5, respectively, and precipitation anomalies by +129.3, −95.6, and −54.2 mm, respectively, compared to the baseline period 1991–2014. Extreme precipitation depth will increase at all stations under SSP1-1.9. However, precipitation change depends on the storm’s return period, station, and scenario under warmer scenarios. The SWAT-predicted river flow over three watersheds will increase, compared to the baseline period, under SSP1-1.9 but decrease under SSP2-4.5 and SSP5-8.5. Among combinations of land-use and climate change scenarios, land-use scenario High under SSP1-1.9 leads to greatest annual streamflow, while no change in land-use under SSP2-4.5 results in maximum reduction in streamflow over three watersheds. Extreme flows over Karaj and Latian watersheds show no sensitivity to different land-use scenarios due to negligible land-use development in future but they still are sensitive to climate change scenarios. Meanwhile, extreme flows over Mamlu watershed show significant sensitivity to both land-use and climate change scenarios due to significant land-use change in future.</p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-025-02396-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-025-02396-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02396-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了土地利用和气候变化对伊朗Alborz省和德黑兰省三个大坝流域(Karaj、Latian和Mamlu)水文状况的影响。在全球变暖情景SSP1-1.9、SSP2-4.5和SSP5-8.5下,利用LARS-WG将CMIP6的日降水和温度数据暂时缩小到10个气候站。细胞自动机-马尔可夫链机器学习通过训练和测试其多层感知器神经网络,在1995-2015年期间观察到的土地利用变化,来模拟未来的土地利用地图(2021-2080)。与1991-2014年相比,SSP1-1.9、SSP2-4.5和SSP5-8.5期研究区将分别升温0.78、2.1和2.4°C,降水异常分别为+129.3、- 95.6和- 54.2 mm。在SSP1-1.9条件下,所有台站的极端降水深度都将增加。然而,降水变化取决于风暴的返回期、站和在较暖情景下的情景。在SSP1-1.9和SSP2-4.5和SSP5-8.5下,sswat预测的三个流域的河流流量将比基线期增加,而在SSP2-4.5和SSP5-8.5下则减少。在土地利用与气候变化组合情景中,SSP1-1.9情景下土地利用情景高导致的年流量最大,而SSP2-4.5情景下土地利用变化不导致的年流量减少最大。卡拉季河流域和拉丁流域的极端流量对不同土地利用情景的敏感性不高,但对气候变化情景仍然敏感。同时,由于未来土地利用的显著变化,马木陆流域的极端流量对土地利用和气候变化都表现出显著的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of land-use and climate change on future extreme flows: a study for three dam watersheds in Alborz and Tehran provinces of Iran

This study assesses the impact of land-use and climate change on hydrological regime of three dam watersheds (Karaj, Latian and Mamlu) in Alborz and Tehran Provinces of Iran. Daily precipitation and temperature data from CMIP6 are transiently downscaled to ten climatic stations using the LARS-WG under global warming scenarios SSP1-1.9, SSP2-4.5, and SSP5-8.5. The Cellular Automata-Markov-chain machine learning is used to simulate future land-use maps (2021–2080) by training and testing its multilayer perceptron neural network with observed land-use change during the period 1995–2015. The study area will experience warming by 0.78, 2.1, and 2.4 °C under SSP1-1.9, SSP2-4.5, and SSP5-8.5, respectively, and precipitation anomalies by +129.3, −95.6, and −54.2 mm, respectively, compared to the baseline period 1991–2014. Extreme precipitation depth will increase at all stations under SSP1-1.9. However, precipitation change depends on the storm’s return period, station, and scenario under warmer scenarios. The SWAT-predicted river flow over three watersheds will increase, compared to the baseline period, under SSP1-1.9 but decrease under SSP2-4.5 and SSP5-8.5. Among combinations of land-use and climate change scenarios, land-use scenario High under SSP1-1.9 leads to greatest annual streamflow, while no change in land-use under SSP2-4.5 results in maximum reduction in streamflow over three watersheds. Extreme flows over Karaj and Latian watersheds show no sensitivity to different land-use scenarios due to negligible land-use development in future but they still are sensitive to climate change scenarios. Meanwhile, extreme flows over Mamlu watershed show significant sensitivity to both land-use and climate change scenarios due to significant land-use change in future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信