利用半连续种子介导途径控制柠檬酸稳定金纳米颗粒的生长

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Bilal, Sulalit Bandyopadhyay
{"title":"利用半连续种子介导途径控制柠檬酸稳定金纳米颗粒的生长","authors":"Muhammad Bilal,&nbsp;Sulalit Bandyopadhyay","doi":"10.1186/s11671-025-04189-8","DOIUrl":null,"url":null,"abstract":"<div><p>Gold nanoparticles (Au NPs) hold unique optical and electronic properties due to their surface plasmon resonance. The size, shape, and surface chemistry of Au NPs are key parameters for altering their optical properties to fine-tune Au NPs for specific applications. We report a size-controlled synthesis of citrate-stabilized Au NPs via the Turkevich method, followed by their growth through a semi-continuous seed-mediated approach. Au NPs of up to 53 nm were synthesized by controlled addition of chloroauric acid (HAuCl₄) to pre-prepared citrate stabilized Au NP seeds. Our approach leverages the residual sodium citrate from the Turkevich reaction to reduce HAuCl₄ during seed-mediated growth of Au NPs. Notably, we observed that a boiling temperature, as opposed to 70 °C, provided better control over nanoparticle size and morphology. Our method addresses several challenges associated with seed-mediated growth by yielding relatively spherical, monodisperse, citrate-stabilized, water-dispersible Au NPs in a single growth step, without sacrificing yield. Furthermore, a kinetics study revealed a continuous increase in particle diameter over the reaction period, hinting at the continuous and uniform growth of Au NPs.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04189-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Controlled growth of citrate-stabilized gold nanoparticles using a semi-continuous seed-mediated route\",\"authors\":\"Muhammad Bilal,&nbsp;Sulalit Bandyopadhyay\",\"doi\":\"10.1186/s11671-025-04189-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gold nanoparticles (Au NPs) hold unique optical and electronic properties due to their surface plasmon resonance. The size, shape, and surface chemistry of Au NPs are key parameters for altering their optical properties to fine-tune Au NPs for specific applications. We report a size-controlled synthesis of citrate-stabilized Au NPs via the Turkevich method, followed by their growth through a semi-continuous seed-mediated approach. Au NPs of up to 53 nm were synthesized by controlled addition of chloroauric acid (HAuCl₄) to pre-prepared citrate stabilized Au NP seeds. Our approach leverages the residual sodium citrate from the Turkevich reaction to reduce HAuCl₄ during seed-mediated growth of Au NPs. Notably, we observed that a boiling temperature, as opposed to 70 °C, provided better control over nanoparticle size and morphology. Our method addresses several challenges associated with seed-mediated growth by yielding relatively spherical, monodisperse, citrate-stabilized, water-dispersible Au NPs in a single growth step, without sacrificing yield. Furthermore, a kinetics study revealed a continuous increase in particle diameter over the reaction period, hinting at the continuous and uniform growth of Au NPs.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04189-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04189-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04189-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金纳米粒子(Au NPs)由于其表面等离子体共振而具有独特的光学和电子特性。金纳米粒子的尺寸、形状和表面化学性质是改变其光学性质以微调金纳米粒子用于特定应用的关键参数。我们报告了通过Turkevich方法控制尺寸合成柠檬酸盐稳定的Au NPs,然后通过半连续种子介导方法生长。通过在预制备的柠檬酸稳定金NP种子中添加氯金酸(HAuCl₄),合成了深度达53 nm的金NP。我们的方法利用Turkevich反应中残留的柠檬酸钠在Au NPs种子介导的生长过程中减少HAuCl₄。值得注意的是,我们观察到沸点温度,而不是70°C,可以更好地控制纳米颗粒的大小和形态。我们的方法解决了与种子介导生长相关的几个挑战,通过在一个生长步骤中产生相对球形的、单分散的、柠檬酸稳定的、水分散的Au NPs,而不牺牲产量。此外,动力学研究表明,在反应期间,颗粒直径连续增加,暗示了Au NPs的连续和均匀生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlled growth of citrate-stabilized gold nanoparticles using a semi-continuous seed-mediated route

Gold nanoparticles (Au NPs) hold unique optical and electronic properties due to their surface plasmon resonance. The size, shape, and surface chemistry of Au NPs are key parameters for altering their optical properties to fine-tune Au NPs for specific applications. We report a size-controlled synthesis of citrate-stabilized Au NPs via the Turkevich method, followed by their growth through a semi-continuous seed-mediated approach. Au NPs of up to 53 nm were synthesized by controlled addition of chloroauric acid (HAuCl₄) to pre-prepared citrate stabilized Au NP seeds. Our approach leverages the residual sodium citrate from the Turkevich reaction to reduce HAuCl₄ during seed-mediated growth of Au NPs. Notably, we observed that a boiling temperature, as opposed to 70 °C, provided better control over nanoparticle size and morphology. Our method addresses several challenges associated with seed-mediated growth by yielding relatively spherical, monodisperse, citrate-stabilized, water-dispersible Au NPs in a single growth step, without sacrificing yield. Furthermore, a kinetics study revealed a continuous increase in particle diameter over the reaction period, hinting at the continuous and uniform growth of Au NPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信