关于泊松结构的同调约化

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Pedro H. Carvalho
{"title":"关于泊松结构的同调约化","authors":"Pedro H. Carvalho","doi":"10.1007/s00220-025-05232-6","DOIUrl":null,"url":null,"abstract":"<div><p>Given a <span>\\({\\mathfrak {g}}\\)</span>-action on a Poisson manifold <span>\\((M, \\pi )\\)</span> and an equivariant map <span>\\(J: M \\rightarrow {{\\mathfrak {h}}}^*,\\)</span> for <span>\\({{\\mathfrak {h}}}\\)</span> a <span>\\({\\mathfrak {g}}\\)</span>-module, we obtain, under natural compatibility and regularity conditions previously considered by Cattaneo–Zambon, a homotopy Poisson algebra generalizing the classical BFV algebra described by Kostant–Sternberg in the usual hamiltonian setting. As an application of our methods, we also derive homological models for the reduced spaces associated to quasi-Poisson and hamiltonian quasi-Poisson spaces.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Homological Reduction of Poisson Structures\",\"authors\":\"Pedro H. Carvalho\",\"doi\":\"10.1007/s00220-025-05232-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a <span>\\\\({\\\\mathfrak {g}}\\\\)</span>-action on a Poisson manifold <span>\\\\((M, \\\\pi )\\\\)</span> and an equivariant map <span>\\\\(J: M \\\\rightarrow {{\\\\mathfrak {h}}}^*,\\\\)</span> for <span>\\\\({{\\\\mathfrak {h}}}\\\\)</span> a <span>\\\\({\\\\mathfrak {g}}\\\\)</span>-module, we obtain, under natural compatibility and regularity conditions previously considered by Cattaneo–Zambon, a homotopy Poisson algebra generalizing the classical BFV algebra described by Kostant–Sternberg in the usual hamiltonian setting. As an application of our methods, we also derive homological models for the reduced spaces associated to quasi-Poisson and hamiltonian quasi-Poisson spaces.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05232-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05232-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

给定泊松流形\((M, \pi )\)上的一个\({\mathfrak {g}}\) -作用和\({\mathfrak {g}}\) -模\({{\mathfrak {h}}}\)上的一个等变映射\(J: M \rightarrow {{\mathfrak {h}}}^*,\),在cattanio - zambon先前考虑的自然相容和正则性条件下,我们得到了一个同伦泊松代数,推广了Kostant-Sternberg在通常哈密顿环境下描述的经典BFV代数。作为我们方法的一个应用,我们也得到了与拟泊松空间和哈密顿拟泊松空间相关的约化空间的同调模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Homological Reduction of Poisson Structures

Given a \({\mathfrak {g}}\)-action on a Poisson manifold \((M, \pi )\) and an equivariant map \(J: M \rightarrow {{\mathfrak {h}}}^*,\) for \({{\mathfrak {h}}}\) a \({\mathfrak {g}}\)-module, we obtain, under natural compatibility and regularity conditions previously considered by Cattaneo–Zambon, a homotopy Poisson algebra generalizing the classical BFV algebra described by Kostant–Sternberg in the usual hamiltonian setting. As an application of our methods, we also derive homological models for the reduced spaces associated to quasi-Poisson and hamiltonian quasi-Poisson spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信