算术量子遍历性的新变体

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Peter Humphries, Jesse Thorner
{"title":"算术量子遍历性的新变体","authors":"Peter Humphries,&nbsp;Jesse Thorner","doi":"10.1007/s00220-024-05203-3","DOIUrl":null,"url":null,"abstract":"<div><p>We establish two new variants of arithmetic quantum ergodicity. The first is for self-dual <span>\\(\\textrm{GL}_2\\)</span> Hecke–Maaß newforms over <span>\\(\\mathbb {Q}\\)</span> as the level and Laplace eigenvalue vary jointly. The second is a nonsplit analogue wherein almost all restrictions of Hilbert (respectively Bianchi) Hecke–Maaß cusp forms to the modular surface dissipate as their Laplace eigenvalues grow.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05203-3.pdf","citationCount":"0","resultStr":"{\"title\":\"New Variants of Arithmetic Quantum Ergodicity\",\"authors\":\"Peter Humphries,&nbsp;Jesse Thorner\",\"doi\":\"10.1007/s00220-024-05203-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish two new variants of arithmetic quantum ergodicity. The first is for self-dual <span>\\\\(\\\\textrm{GL}_2\\\\)</span> Hecke–Maaß newforms over <span>\\\\(\\\\mathbb {Q}\\\\)</span> as the level and Laplace eigenvalue vary jointly. The second is a nonsplit analogue wherein almost all restrictions of Hilbert (respectively Bianchi) Hecke–Maaß cusp forms to the modular surface dissipate as their Laplace eigenvalues grow.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05203-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05203-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05203-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

建立了算术量子遍历性的两个新变体。第一种是自对偶\(\textrm{GL}_2\)在\(\mathbb {Q}\)上,当水平和拉普拉斯特征值共同变化时,hecke - maasß newforms。第二种是非分裂模拟,其中几乎所有Hilbert(分别为Bianchi) hecke - maasus cusp形式对模表面的限制都随着其拉普拉斯特征值的增长而消散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Variants of Arithmetic Quantum Ergodicity

We establish two new variants of arithmetic quantum ergodicity. The first is for self-dual \(\textrm{GL}_2\) Hecke–Maaß newforms over \(\mathbb {Q}\) as the level and Laplace eigenvalue vary jointly. The second is a nonsplit analogue wherein almost all restrictions of Hilbert (respectively Bianchi) Hecke–Maaß cusp forms to the modular surface dissipate as their Laplace eigenvalues grow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信