突变曲霉纤维素酶在蔗渣可持续生产2G乙醇中的应用

IF 3.1 3区 工程技术 Q3 ENERGY & FUELS
Satwika Das, Dharmendra Shakya, Ramandeep Kaur, Naveen Kumar B, Chandukishore T, Surajbhan Sevda, Rangabhashiyam Selvasembian, Ashish A. Prabhu
{"title":"突变曲霉纤维素酶在蔗渣可持续生产2G乙醇中的应用","authors":"Satwika Das,&nbsp;Dharmendra Shakya,&nbsp;Ramandeep Kaur,&nbsp;Naveen Kumar B,&nbsp;Chandukishore T,&nbsp;Surajbhan Sevda,&nbsp;Rangabhashiyam Selvasembian,&nbsp;Ashish A. Prabhu","doi":"10.1007/s12155-025-10825-z","DOIUrl":null,"url":null,"abstract":"<div><p>Sugarcane bagasse (SB) is a lucrative feedstock for sustainable fuel production, but economical conversion into fermentable sugars and ethanol presents challenges from a biorefinery perspective. The present study aimed to screen and identify a robust cellulase-producing fungal strain to improve the saccharification of SB. <i>Aspergillus fumigatus</i> exhibited enhanced cellulase activity when untreated SB served as the substrate. The EMS mediated chemical mutagenesis of <i>A. fumigatus</i> with 200 mM EMS further enhanced the cellulase production by approximately 23.47%, relative to the wild-type strain. The process optimization method demonstrated peak cellulase activity on the 6th day of incubation, at 33 °C, and with an inoculum size of 5 × 10<sup>7</sup> spores. The optimization of the filter paper assay enhanced the maximum activity to 2.5 U/mL by maintaining 6 pH and 55 °C, along with the subsequent addition of MnCl<sub>2</sub> ions to the reaction mixture. The Taguchi orthogonal array was employed to optimize the process parameters of enzymatic hydrolysis of alkali-pretreated SB, demonstrating highest efficiency when hydrolysis parameters were set to pH 4, 55 °C, 10 U enzyme, and 20 g/L substrate (SB) loading. The hydrolysate was utilized to evaluate bioethanol production employing <i>Saccharomyces cerevisiae</i> MTCC 824. The strain generated 4.2 g/L of ethanol with a total yield of 0.21 g/g. This study seeks to manage agricultural residues and wastes, generating a nutrient-rich hydrolysate that can be utilized by yeast strains for bioethanol production, thus rendering the entire process sustainable, environmentally friendly, and cost-effective.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Cellulase From Mutated Aspergillus sp. for the Production of Sustainable 2G Ethanol From Sugarcane Bagasse\",\"authors\":\"Satwika Das,&nbsp;Dharmendra Shakya,&nbsp;Ramandeep Kaur,&nbsp;Naveen Kumar B,&nbsp;Chandukishore T,&nbsp;Surajbhan Sevda,&nbsp;Rangabhashiyam Selvasembian,&nbsp;Ashish A. Prabhu\",\"doi\":\"10.1007/s12155-025-10825-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sugarcane bagasse (SB) is a lucrative feedstock for sustainable fuel production, but economical conversion into fermentable sugars and ethanol presents challenges from a biorefinery perspective. The present study aimed to screen and identify a robust cellulase-producing fungal strain to improve the saccharification of SB. <i>Aspergillus fumigatus</i> exhibited enhanced cellulase activity when untreated SB served as the substrate. The EMS mediated chemical mutagenesis of <i>A. fumigatus</i> with 200 mM EMS further enhanced the cellulase production by approximately 23.47%, relative to the wild-type strain. The process optimization method demonstrated peak cellulase activity on the 6th day of incubation, at 33 °C, and with an inoculum size of 5 × 10<sup>7</sup> spores. The optimization of the filter paper assay enhanced the maximum activity to 2.5 U/mL by maintaining 6 pH and 55 °C, along with the subsequent addition of MnCl<sub>2</sub> ions to the reaction mixture. The Taguchi orthogonal array was employed to optimize the process parameters of enzymatic hydrolysis of alkali-pretreated SB, demonstrating highest efficiency when hydrolysis parameters were set to pH 4, 55 °C, 10 U enzyme, and 20 g/L substrate (SB) loading. The hydrolysate was utilized to evaluate bioethanol production employing <i>Saccharomyces cerevisiae</i> MTCC 824. The strain generated 4.2 g/L of ethanol with a total yield of 0.21 g/g. This study seeks to manage agricultural residues and wastes, generating a nutrient-rich hydrolysate that can be utilized by yeast strains for bioethanol production, thus rendering the entire process sustainable, environmentally friendly, and cost-effective.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-025-10825-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-025-10825-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

甘蔗渣(SB)是一种利润丰厚的可持续燃料生产原料,但从生物炼制的角度来看,将甘蔗渣经济地转化为可发酵糖和乙醇是一个挑战。本研究旨在筛选和鉴定一种强大的纤维素酶产生真菌菌株,以改善SB的糖化。烟曲霉在未经处理的SB作为底物时表现出增强的纤维素酶活性。用200 mM EMS对烟曲霉进行化学诱变,使其纤维素酶产量比野生型提高了23.47%。在33℃条件下,当接种量为5 × 107孢子时,纤维素酶活性在培养第6天达到峰值。优化后的滤纸法在维持6 pH和55℃的条件下,随着MnCl2离子的加入,反应混合物的最大活性提高到2.5 U/mL。采用田口正交法对碱预处理SB的酶解工艺参数进行了优化,结果表明,pH为4、55℃、酶量为10 U、底物(SB)量为20 g/L时,酶解效率最高。利用该水解产物对酿酒酵母MTCC 824生产生物乙醇进行了评价。菌株的乙醇产率为4.2 g/L,总产率为0.21 g/g。本研究旨在管理农业残留物和废物,产生一种营养丰富的水解物,可以被酵母菌株用于生物乙醇生产,从而使整个过程可持续,环保,成本效益高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of Cellulase From Mutated Aspergillus sp. for the Production of Sustainable 2G Ethanol From Sugarcane Bagasse

Application of Cellulase From Mutated Aspergillus sp. for the Production of Sustainable 2G Ethanol From Sugarcane Bagasse

Sugarcane bagasse (SB) is a lucrative feedstock for sustainable fuel production, but economical conversion into fermentable sugars and ethanol presents challenges from a biorefinery perspective. The present study aimed to screen and identify a robust cellulase-producing fungal strain to improve the saccharification of SB. Aspergillus fumigatus exhibited enhanced cellulase activity when untreated SB served as the substrate. The EMS mediated chemical mutagenesis of A. fumigatus with 200 mM EMS further enhanced the cellulase production by approximately 23.47%, relative to the wild-type strain. The process optimization method demonstrated peak cellulase activity on the 6th day of incubation, at 33 °C, and with an inoculum size of 5 × 107 spores. The optimization of the filter paper assay enhanced the maximum activity to 2.5 U/mL by maintaining 6 pH and 55 °C, along with the subsequent addition of MnCl2 ions to the reaction mixture. The Taguchi orthogonal array was employed to optimize the process parameters of enzymatic hydrolysis of alkali-pretreated SB, demonstrating highest efficiency when hydrolysis parameters were set to pH 4, 55 °C, 10 U enzyme, and 20 g/L substrate (SB) loading. The hydrolysate was utilized to evaluate bioethanol production employing Saccharomyces cerevisiae MTCC 824. The strain generated 4.2 g/L of ethanol with a total yield of 0.21 g/g. This study seeks to manage agricultural residues and wastes, generating a nutrient-rich hydrolysate that can be utilized by yeast strains for bioethanol production, thus rendering the entire process sustainable, environmentally friendly, and cost-effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信