{"title":"多孔层状结构可压缩疏水纤维素纳米纤维气凝胶高效吸油剂的界面工程设计","authors":"Qicheng Bi, Huiwen Pang, Zhiyong Qin, Liuting Mo","doi":"10.1007/s10570-025-06376-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocellulose aerogels have been considered as attractive sorbents for the remediation of oil spills due to their light weight, sustainability, and abundant pore constructure. However, nanocellulose aerogels integrating high mechanical robustness and efficient oil adsorption properties are still critical challenges. Herein, a highly hydrophobic and compressible oil adsorption aerogel with special porous lamellar structures, containing cellulose nanofibril (CNF) frameworks, SiO<sub>2</sub>@polydopamine (PDA) core-shell nanospheres, and hydrophobic modification by octadecyltrimethoxysilane (OTMS) silane long chains, is fabricated through the rapid dopamine (DA) co-deposition and silanization modification interface engineering. The core-shell particles with PDA as the binder and SiO<sub>2</sub> particles as the nano-sized structures were adhesively coated on CNF skeleton to introduce monolayer coatings. The synergistic effect of the SiO<sub>2</sub>@PDA core-shell nanospheres and OTMS silane long chains significantly improved stable hydrophobicity and environmental resistance of aerogels in harsh conditions. The unique porous architecture of the aerogel can not only enhance mechanical compressibility but guide the direction of oil and organic pollutants transport. The obtained aerogels showed excellent mechanical properties with a high compressive strength of 1.23 MPa and outstanding oil adsorption performance with a high oil capture capacity of 44.63g/g. This facile strategy holds great promise to develop sustainable, compressible, and effective oil absorbents for highly efficient oil adsorbents.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 3","pages":"1771 - 1786"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface engineering design of compressible and hydrophobic cellulose nanofibril aerogel with porous lamellar structure as highly efficient oil adsorbent\",\"authors\":\"Qicheng Bi, Huiwen Pang, Zhiyong Qin, Liuting Mo\",\"doi\":\"10.1007/s10570-025-06376-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocellulose aerogels have been considered as attractive sorbents for the remediation of oil spills due to their light weight, sustainability, and abundant pore constructure. However, nanocellulose aerogels integrating high mechanical robustness and efficient oil adsorption properties are still critical challenges. Herein, a highly hydrophobic and compressible oil adsorption aerogel with special porous lamellar structures, containing cellulose nanofibril (CNF) frameworks, SiO<sub>2</sub>@polydopamine (PDA) core-shell nanospheres, and hydrophobic modification by octadecyltrimethoxysilane (OTMS) silane long chains, is fabricated through the rapid dopamine (DA) co-deposition and silanization modification interface engineering. The core-shell particles with PDA as the binder and SiO<sub>2</sub> particles as the nano-sized structures were adhesively coated on CNF skeleton to introduce monolayer coatings. The synergistic effect of the SiO<sub>2</sub>@PDA core-shell nanospheres and OTMS silane long chains significantly improved stable hydrophobicity and environmental resistance of aerogels in harsh conditions. The unique porous architecture of the aerogel can not only enhance mechanical compressibility but guide the direction of oil and organic pollutants transport. The obtained aerogels showed excellent mechanical properties with a high compressive strength of 1.23 MPa and outstanding oil adsorption performance with a high oil capture capacity of 44.63g/g. This facile strategy holds great promise to develop sustainable, compressible, and effective oil absorbents for highly efficient oil adsorbents.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"32 3\",\"pages\":\"1771 - 1786\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-025-06376-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06376-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Interface engineering design of compressible and hydrophobic cellulose nanofibril aerogel with porous lamellar structure as highly efficient oil adsorbent
Nanocellulose aerogels have been considered as attractive sorbents for the remediation of oil spills due to their light weight, sustainability, and abundant pore constructure. However, nanocellulose aerogels integrating high mechanical robustness and efficient oil adsorption properties are still critical challenges. Herein, a highly hydrophobic and compressible oil adsorption aerogel with special porous lamellar structures, containing cellulose nanofibril (CNF) frameworks, SiO2@polydopamine (PDA) core-shell nanospheres, and hydrophobic modification by octadecyltrimethoxysilane (OTMS) silane long chains, is fabricated through the rapid dopamine (DA) co-deposition and silanization modification interface engineering. The core-shell particles with PDA as the binder and SiO2 particles as the nano-sized structures were adhesively coated on CNF skeleton to introduce monolayer coatings. The synergistic effect of the SiO2@PDA core-shell nanospheres and OTMS silane long chains significantly improved stable hydrophobicity and environmental resistance of aerogels in harsh conditions. The unique porous architecture of the aerogel can not only enhance mechanical compressibility but guide the direction of oil and organic pollutants transport. The obtained aerogels showed excellent mechanical properties with a high compressive strength of 1.23 MPa and outstanding oil adsorption performance with a high oil capture capacity of 44.63g/g. This facile strategy holds great promise to develop sustainable, compressible, and effective oil absorbents for highly efficient oil adsorbents.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.