一种面向公平感知地面终端的高能效ris辅助多无人机覆盖方案

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS
Na Lin;Tianxiong Wu;Liang Zhao;Ammar Hawbani;Shaohua Wan;Mohsen Guizani
{"title":"一种面向公平感知地面终端的高能效ris辅助多无人机覆盖方案","authors":"Na Lin;Tianxiong Wu;Liang Zhao;Ammar Hawbani;Shaohua Wan;Mohsen Guizani","doi":"10.1109/TGCN.2024.3424980","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV)-assisted communications are critical in regional wireless networks. Using reconfigurable intelligent surfaces (RISs) can significantly improve UAVs’ throughput and energy efficiency. Due to limited communications resources, the data transfer rate of ground terminals (GTs) could be slower, and the throughput may be low. Using RIS-assisted UAVs can effectively address these limitations. This paper focuses on optimizing the three-dimensional (3D) trajectory of the UAV and the scheduling order of the GTs and designing the phase shift of the RIS to maximize energy efficiency while meeting the limited energy and fair service constraints in the case of fair service GTs. To address the non-convexity of this problem, we propose a triple deep q-network (TDQN) algorithm, which better avoids the overestimation problem during the optimization process. We propose an improved k-density-based spatial clustering of applications with noise (K-DBSCAN) clustering algorithm, which is characterized by the ability to output the initial movement range of the UAV and prune the deep reinforcement learning (DRL) state space by the initial movement range to speed up DRL training based on the completion of the partitioning deployment work. A fair screening mechanism is proposed to satisfy the fairness constraint. The results show that the TDQN algorithm is 2.9% more energy efficient than the baseline. The K-DBSCAN algorithm speeds up the training of the TDQN algorithm by 59.4%. The fair screening mechanism reduces the throughput variance from an average of 114099.9 to an average of 46.9.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"9 1","pages":"164-176"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Energy Effective RIS-Assisted Multi-UAV Coverage Scheme for Fairness-Aware Ground Terminals\",\"authors\":\"Na Lin;Tianxiong Wu;Liang Zhao;Ammar Hawbani;Shaohua Wan;Mohsen Guizani\",\"doi\":\"10.1109/TGCN.2024.3424980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicle (UAV)-assisted communications are critical in regional wireless networks. Using reconfigurable intelligent surfaces (RISs) can significantly improve UAVs’ throughput and energy efficiency. Due to limited communications resources, the data transfer rate of ground terminals (GTs) could be slower, and the throughput may be low. Using RIS-assisted UAVs can effectively address these limitations. This paper focuses on optimizing the three-dimensional (3D) trajectory of the UAV and the scheduling order of the GTs and designing the phase shift of the RIS to maximize energy efficiency while meeting the limited energy and fair service constraints in the case of fair service GTs. To address the non-convexity of this problem, we propose a triple deep q-network (TDQN) algorithm, which better avoids the overestimation problem during the optimization process. We propose an improved k-density-based spatial clustering of applications with noise (K-DBSCAN) clustering algorithm, which is characterized by the ability to output the initial movement range of the UAV and prune the deep reinforcement learning (DRL) state space by the initial movement range to speed up DRL training based on the completion of the partitioning deployment work. A fair screening mechanism is proposed to satisfy the fairness constraint. The results show that the TDQN algorithm is 2.9% more energy efficient than the baseline. The K-DBSCAN algorithm speeds up the training of the TDQN algorithm by 59.4%. The fair screening mechanism reduces the throughput variance from an average of 114099.9 to an average of 46.9.\",\"PeriodicalId\":13052,\"journal\":{\"name\":\"IEEE Transactions on Green Communications and Networking\",\"volume\":\"9 1\",\"pages\":\"164-176\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Green Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10589456/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10589456/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

无人机(UAV)辅助通信在区域无线网络中至关重要。采用可重构智能表面(RISs)可以显著提高无人机的吞吐量和能效。由于通信资源有限,地面终端的数据传输速率可能较慢,吞吐量可能较低。使用ris辅助无人机可以有效地解决这些限制。本文重点研究了在公平服务gt的情况下,优化无人机的三维轨迹和gt的调度顺序,设计RIS的相移,在满足有限能量和公平服务约束的情况下,最大限度地提高能效。为了解决这一问题的非凸性,我们提出了一种三重深度q-网络(TDQN)算法,该算法更好地避免了优化过程中的过估计问题。提出了一种改进的基于k密度的带噪声应用空间聚类(K-DBSCAN)聚类算法,该算法的特点是能够输出无人机的初始运动范围,并通过初始运动范围对深度强化学习(DRL)状态空间进行裁剪,从而在完成分区部署工作的基础上加快DRL训练。提出了一种满足公平性约束的公平筛选机制。结果表明,TDQN算法的能源效率比基线提高2.9%。K-DBSCAN算法对TDQN算法的训练速度提高了59.4%。公平筛选机制将吞吐量方差从平均114099.9降低到平均46.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy Effective RIS-Assisted Multi-UAV Coverage Scheme for Fairness-Aware Ground Terminals
Unmanned aerial vehicle (UAV)-assisted communications are critical in regional wireless networks. Using reconfigurable intelligent surfaces (RISs) can significantly improve UAVs’ throughput and energy efficiency. Due to limited communications resources, the data transfer rate of ground terminals (GTs) could be slower, and the throughput may be low. Using RIS-assisted UAVs can effectively address these limitations. This paper focuses on optimizing the three-dimensional (3D) trajectory of the UAV and the scheduling order of the GTs and designing the phase shift of the RIS to maximize energy efficiency while meeting the limited energy and fair service constraints in the case of fair service GTs. To address the non-convexity of this problem, we propose a triple deep q-network (TDQN) algorithm, which better avoids the overestimation problem during the optimization process. We propose an improved k-density-based spatial clustering of applications with noise (K-DBSCAN) clustering algorithm, which is characterized by the ability to output the initial movement range of the UAV and prune the deep reinforcement learning (DRL) state space by the initial movement range to speed up DRL training based on the completion of the partitioning deployment work. A fair screening mechanism is proposed to satisfy the fairness constraint. The results show that the TDQN algorithm is 2.9% more energy efficient than the baseline. The K-DBSCAN algorithm speeds up the training of the TDQN algorithm by 59.4%. The fair screening mechanism reduces the throughput variance from an average of 114099.9 to an average of 46.9.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信