基于电网跟随和成网分层子群控制的混合风电场频率电压主动支持策略

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Haiyu Zhao;Qihang Zong;Hongyu Zhou;Wei Yao;Kangyi Sun;Yuqing Zhou;Jinyu Wen
{"title":"基于电网跟随和成网分层子群控制的混合风电场频率电压主动支持策略","authors":"Haiyu Zhao;Qihang Zong;Hongyu Zhou;Wei Yao;Kangyi Sun;Yuqing Zhou;Jinyu Wen","doi":"10.17775/CSEEJPES.2024.02340","DOIUrl":null,"url":null,"abstract":"The GFL-GFM hybrid wind farm (HWF) combines the voltage source control advantages of grid-forming (GFM) wind turbines (WTs) with the current source control advantages of grid-following (GFL) wind turbines. It becomes a new type of large-scale grid-connected wind power generation. In this paper, we propose an HWF frequency-voltage active support based on GFL and GFM hierarchical subgroup control. It aims to realize the support of active power and reactive power under the premise of ensuring system stability. The strategy consists of the determination of the control objectives of the GFM-GFL subgroups, the distributed control (DC) of the GFM-GFL subgroups, and the adaptive control and switching of each unit of the GFM and GFL groups. The GFM-group maintains the grid-connected voltage stability and the GFL-group exhausts the active support. DC at the group level and adaptive control at the unit level are included under the hierarchy of the respective objectives. Finally, a GFL-GFM HWF model is established on the MATLAB/Simulink platform, and the simulation verifies that the proposed strategy can realize the enhancement of the frequency-voltage support capability of the HWF under the premise of grid-connected stability.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"65-77"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838248","citationCount":"0","resultStr":"{\"title\":\"Frequency-Voltage Active Support Strategy for Hybrid Wind Farms Based on Grid-Following and Grid-Forming Hierarchical Subgroup Control\",\"authors\":\"Haiyu Zhao;Qihang Zong;Hongyu Zhou;Wei Yao;Kangyi Sun;Yuqing Zhou;Jinyu Wen\",\"doi\":\"10.17775/CSEEJPES.2024.02340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The GFL-GFM hybrid wind farm (HWF) combines the voltage source control advantages of grid-forming (GFM) wind turbines (WTs) with the current source control advantages of grid-following (GFL) wind turbines. It becomes a new type of large-scale grid-connected wind power generation. In this paper, we propose an HWF frequency-voltage active support based on GFL and GFM hierarchical subgroup control. It aims to realize the support of active power and reactive power under the premise of ensuring system stability. The strategy consists of the determination of the control objectives of the GFM-GFL subgroups, the distributed control (DC) of the GFM-GFL subgroups, and the adaptive control and switching of each unit of the GFM and GFL groups. The GFM-group maintains the grid-connected voltage stability and the GFL-group exhausts the active support. DC at the group level and adaptive control at the unit level are included under the hierarchy of the respective objectives. Finally, a GFL-GFM HWF model is established on the MATLAB/Simulink platform, and the simulation verifies that the proposed strategy can realize the enhancement of the frequency-voltage support capability of the HWF under the premise of grid-connected stability.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"11 1\",\"pages\":\"65-77\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838248\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10838248/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10838248/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

GFL-GFM混合风电场(HWF)结合了电网形成(GFM)风力涡轮机(WTs)的电压源控制优势和电网跟随(GFL)风力涡轮机的电流源控制优势。成为一种新型的大型并网风力发电。本文提出了一种基于GFL和GFM分层子群控制的HWF频率电压主动支持方法。其目的是在保证系统稳定的前提下实现有功和无功的支持。该策略包括GFM-GFL子群控制目标的确定、GFM-GFL子群的分布式控制(DC)以及GFM和GFL子群各单元的自适应控制和切换。gfm组维持并网电压稳定,gfl组耗尽主动支持。在各自的目标层次结构下,包括组级的DC和单位级的自适应控制。最后,在MATLAB/Simulink平台上建立了GFL-GFM HWF模型,仿真验证了所提出的策略能够在保证并网稳定的前提下实现增强HWF的频率电压支持能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency-Voltage Active Support Strategy for Hybrid Wind Farms Based on Grid-Following and Grid-Forming Hierarchical Subgroup Control
The GFL-GFM hybrid wind farm (HWF) combines the voltage source control advantages of grid-forming (GFM) wind turbines (WTs) with the current source control advantages of grid-following (GFL) wind turbines. It becomes a new type of large-scale grid-connected wind power generation. In this paper, we propose an HWF frequency-voltage active support based on GFL and GFM hierarchical subgroup control. It aims to realize the support of active power and reactive power under the premise of ensuring system stability. The strategy consists of the determination of the control objectives of the GFM-GFL subgroups, the distributed control (DC) of the GFM-GFL subgroups, and the adaptive control and switching of each unit of the GFM and GFL groups. The GFM-group maintains the grid-connected voltage stability and the GFL-group exhausts the active support. DC at the group level and adaptive control at the unit level are included under the hierarchy of the respective objectives. Finally, a GFL-GFM HWF model is established on the MATLAB/Simulink platform, and the simulation verifies that the proposed strategy can realize the enhancement of the frequency-voltage support capability of the HWF under the premise of grid-connected stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信