随机种群更新在多目标进化算法中具有重要的应用价值

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chao Bian , Yawen Zhou , Miqing Li , Chao Qian
{"title":"随机种群更新在多目标进化算法中具有重要的应用价值","authors":"Chao Bian ,&nbsp;Yawen Zhou ,&nbsp;Miqing Li ,&nbsp;Chao Qian","doi":"10.1016/j.artint.2025.104308","DOIUrl":null,"url":null,"abstract":"<div><div>Evolutionary algorithms (EAs) have been widely and successfully applied to solve multi-objective optimization problems, due to their nature of population-based search. Population update, a key component in multi-objective EAs (MOEAs), is usually performed in a greedy, deterministic manner. That is, the next-generation population is formed by selecting the best solutions from the current population and newly-generated solutions (irrespective of the selection criteria used such as Pareto dominance, crowdedness and indicators). In this paper, we analytically present that stochastic population update can be beneficial for the search of MOEAs. Specifically, we prove that the expected running time of two well-established MOEAs, SMS-EMOA and NSGA-II, for solving two bi-objective problems, OneJumpZeroJump and bi-objective RealRoyalRoad, can be exponentially decreased if replacing its deterministic population update mechanism by a stochastic one. Empirical studies also verify the effectiveness of the proposed population update method. This work is an attempt to show the benefit of introducing randomness into the population update of MOEAs. Its positive results, which might hold more generally, should encourage the exploration of developing new MOEAs in the area.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"341 ","pages":"Article 104308"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic population update can provably be helpful in multi-objective evolutionary algorithms\",\"authors\":\"Chao Bian ,&nbsp;Yawen Zhou ,&nbsp;Miqing Li ,&nbsp;Chao Qian\",\"doi\":\"10.1016/j.artint.2025.104308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evolutionary algorithms (EAs) have been widely and successfully applied to solve multi-objective optimization problems, due to their nature of population-based search. Population update, a key component in multi-objective EAs (MOEAs), is usually performed in a greedy, deterministic manner. That is, the next-generation population is formed by selecting the best solutions from the current population and newly-generated solutions (irrespective of the selection criteria used such as Pareto dominance, crowdedness and indicators). In this paper, we analytically present that stochastic population update can be beneficial for the search of MOEAs. Specifically, we prove that the expected running time of two well-established MOEAs, SMS-EMOA and NSGA-II, for solving two bi-objective problems, OneJumpZeroJump and bi-objective RealRoyalRoad, can be exponentially decreased if replacing its deterministic population update mechanism by a stochastic one. Empirical studies also verify the effectiveness of the proposed population update method. This work is an attempt to show the benefit of introducing randomness into the population update of MOEAs. Its positive results, which might hold more generally, should encourage the exploration of developing new MOEAs in the area.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"341 \",\"pages\":\"Article 104308\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000437022500027X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000437022500027X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

进化算法由于其基于群体的搜索特性,在多目标优化问题中得到了广泛而成功的应用。种群更新是多目标ea (moea)的关键组成部分,通常以贪婪的、确定性的方式进行。也就是说,下一代群体是通过从当前群体和新产生的解决方案中选择最佳解决方案而形成的(不考虑使用的选择标准,如帕累托优势,拥挤性和指标)。在本文中,我们分析地证明了随机种群更新对寻找moea是有利的。具体而言,我们证明了SMS-EMOA和NSGA-II这两个已建立的moea在解决OneJumpZeroJump和双目标RealRoyalRoad两个双目标问题时,如果用随机种群更新机制取代其确定性种群更新机制,其预期运行时间可以成倍地减少。实证研究也验证了所提出的种群更新方法的有效性。这项工作试图展示在moea种群更新中引入随机性的好处。它的积极成果,可能具有更广泛的意义,应该鼓励探索在该地区发展新的moea。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic population update can provably be helpful in multi-objective evolutionary algorithms
Evolutionary algorithms (EAs) have been widely and successfully applied to solve multi-objective optimization problems, due to their nature of population-based search. Population update, a key component in multi-objective EAs (MOEAs), is usually performed in a greedy, deterministic manner. That is, the next-generation population is formed by selecting the best solutions from the current population and newly-generated solutions (irrespective of the selection criteria used such as Pareto dominance, crowdedness and indicators). In this paper, we analytically present that stochastic population update can be beneficial for the search of MOEAs. Specifically, we prove that the expected running time of two well-established MOEAs, SMS-EMOA and NSGA-II, for solving two bi-objective problems, OneJumpZeroJump and bi-objective RealRoyalRoad, can be exponentially decreased if replacing its deterministic population update mechanism by a stochastic one. Empirical studies also verify the effectiveness of the proposed population update method. This work is an attempt to show the benefit of introducing randomness into the population update of MOEAs. Its positive results, which might hold more generally, should encourage the exploration of developing new MOEAs in the area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信