基于新型刀具进给方法的3d打印哈氏合金微孔电火花加工

Q1 Engineering
Akash Korgal , Arun Kumar Shettigar , Navin Karanth P , Nishanth Kumar , Bindu Madhavi J
{"title":"基于新型刀具进给方法的3d打印哈氏合金微孔电火花加工","authors":"Akash Korgal ,&nbsp;Arun Kumar Shettigar ,&nbsp;Navin Karanth P ,&nbsp;Nishanth Kumar ,&nbsp;Bindu Madhavi J","doi":"10.1016/j.ijlmm.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>Hastelloy, a nickel-based superalloy renowned for its exceptional resistance to corrosion at high temperatures, is widely used in sectors such as nuclear, aerospace, chemical processing, and pharmaceuticals. Microelectrical discharge machining (μ-EDM) is crucial for generating microholes and channels on Hastelloy. Since it effectively addresses difficulties like work hardening, high strength &amp; wear resistance, and low thermal conductivity in traditional machining. Microholes play a major role in many critical components for precise control of fluids in fuel injectors, managing heat in turbine blades, controlled gas exchange, etc. The current research investigates the drilling of 8:1 aspect ratio microholes machined by 400 μm diameter electrodes. This study investigated the influence of tool material (tungsten carbide, carbide drill bit, and brass) on μ-EDM performance. Compared to tungsten carbide and carbide drill bits, brass exhibited significantly lower electrode wear, leading to more precise microholes with reduced overcut and taper angle. However, brass also required a substantially longer machining time. Carbide drill bits offered a balance between wear resistance, machining time, and overcut/taper angle.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 2","pages":"Pages 157-164"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro-discharge machining of microholes on 3d printed Hastelloy using the novel tool-feeding approach\",\"authors\":\"Akash Korgal ,&nbsp;Arun Kumar Shettigar ,&nbsp;Navin Karanth P ,&nbsp;Nishanth Kumar ,&nbsp;Bindu Madhavi J\",\"doi\":\"10.1016/j.ijlmm.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hastelloy, a nickel-based superalloy renowned for its exceptional resistance to corrosion at high temperatures, is widely used in sectors such as nuclear, aerospace, chemical processing, and pharmaceuticals. Microelectrical discharge machining (μ-EDM) is crucial for generating microholes and channels on Hastelloy. Since it effectively addresses difficulties like work hardening, high strength &amp; wear resistance, and low thermal conductivity in traditional machining. Microholes play a major role in many critical components for precise control of fluids in fuel injectors, managing heat in turbine blades, controlled gas exchange, etc. The current research investigates the drilling of 8:1 aspect ratio microholes machined by 400 μm diameter electrodes. This study investigated the influence of tool material (tungsten carbide, carbide drill bit, and brass) on μ-EDM performance. Compared to tungsten carbide and carbide drill bits, brass exhibited significantly lower electrode wear, leading to more precise microholes with reduced overcut and taper angle. However, brass also required a substantially longer machining time. Carbide drill bits offered a balance between wear resistance, machining time, and overcut/taper angle.</div></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":\"8 2\",\"pages\":\"Pages 157-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840424000969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

哈氏合金是一种镍基高温合金,因其在高温下具有优异的耐腐蚀性而闻名,广泛应用于核能、航空航天、化学加工和制药等领域。微电火花加工(μ-EDM)是哈氏合金上产生微孔和微通道的关键。由于它有效地解决了加工硬化,高强度和;耐磨,导热系数低,在传统的加工。微孔在许多关键部件中发挥着重要作用,用于精确控制喷油器中的流体,管理涡轮叶片中的热量,控制气体交换等。研究了直径为400 μm的电极加工成8:1纵横比的微孔。研究了刀具材料(碳化钨、硬质合金钻头和黄铜)对μ-EDM性能的影响。与碳化钨和硬质合金钻头相比,黄铜的电极磨损明显更低,导致微孔更精确,过切角和锥度也更小。然而,黄铜也需要更长的加工时间。硬质合金钻头提供了耐磨性、加工时间和过切削/锥度角之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-discharge machining of microholes on 3d printed Hastelloy using the novel tool-feeding approach
Hastelloy, a nickel-based superalloy renowned for its exceptional resistance to corrosion at high temperatures, is widely used in sectors such as nuclear, aerospace, chemical processing, and pharmaceuticals. Microelectrical discharge machining (μ-EDM) is crucial for generating microholes and channels on Hastelloy. Since it effectively addresses difficulties like work hardening, high strength & wear resistance, and low thermal conductivity in traditional machining. Microholes play a major role in many critical components for precise control of fluids in fuel injectors, managing heat in turbine blades, controlled gas exchange, etc. The current research investigates the drilling of 8:1 aspect ratio microholes machined by 400 μm diameter electrodes. This study investigated the influence of tool material (tungsten carbide, carbide drill bit, and brass) on μ-EDM performance. Compared to tungsten carbide and carbide drill bits, brass exhibited significantly lower electrode wear, leading to more precise microholes with reduced overcut and taper angle. However, brass also required a substantially longer machining time. Carbide drill bits offered a balance between wear resistance, machining time, and overcut/taper angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信