机器学习预测Cs2PbSnI6双钙钛矿纳米晶体的合成

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pritish Mishra, Mengyuan Zhang, Manaswita Kar, Maria Hellgren, Michele Casula, Benjamin Lenz*, Andy Paul Chen, Jose Recatala-Gomez, Shakti Prasad Padhy, Marina Cagnon Trouche, Mohamed-Raouf Amara, Ivan Cheong, Zengshan Xing, Carole Diederichs*, Tze Chien Sum, Martial Duchamp, Yeng Ming Lam and Kedar Hippalgaonkar*, 
{"title":"机器学习预测Cs2PbSnI6双钙钛矿纳米晶体的合成","authors":"Pritish Mishra,&nbsp;Mengyuan Zhang,&nbsp;Manaswita Kar,&nbsp;Maria Hellgren,&nbsp;Michele Casula,&nbsp;Benjamin Lenz*,&nbsp;Andy Paul Chen,&nbsp;Jose Recatala-Gomez,&nbsp;Shakti Prasad Padhy,&nbsp;Marina Cagnon Trouche,&nbsp;Mohamed-Raouf Amara,&nbsp;Ivan Cheong,&nbsp;Zengshan Xing,&nbsp;Carole Diederichs*,&nbsp;Tze Chien Sum,&nbsp;Martial Duchamp,&nbsp;Yeng Ming Lam and Kedar Hippalgaonkar*,&nbsp;","doi":"10.1021/acsnano.4c1350010.1021/acsnano.4c13500","DOIUrl":null,"url":null,"abstract":"<p >Halide perovskites are positioned at the forefront of photonics, optoelectronics, and photovoltaics, owing to their excellent optical properties, with emission wavelengths ranging from blue to near-infrared, and their ease in manufacturing. However, their vast composition space and the corresponding emission energies are still not fully mapped, and guided high-throughput screening that allows for targeted material synthesis would be desirable. To this end, we use experimental data from the literature to build a machine learning model, predicting the band gap of 10,920 possible compositions. Focusing on one of the most promising candidates, Cs<sub>2</sub>PbSnI<sub>6</sub>, we validate the model by synthesizing and characterizing nanocrystals of the ordered 2-2 elpasolite (double perovskite) structure. The measured photoluminescence spectra agree with both ab initio GW band structure calculations and the machine learning-predicted band gap. Therefore, our study not only provides a machine learning model for the composition space of the halide perovskites but also introduces elpasolite Cs<sub>2</sub>PbSnI<sub>6</sub> as a promising candidate material for optoelectronic applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 6","pages":"6107–6119 6107–6119"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Machine Learning-Predicted Cs2PbSnI6 Double Perovskite Nanocrystals\",\"authors\":\"Pritish Mishra,&nbsp;Mengyuan Zhang,&nbsp;Manaswita Kar,&nbsp;Maria Hellgren,&nbsp;Michele Casula,&nbsp;Benjamin Lenz*,&nbsp;Andy Paul Chen,&nbsp;Jose Recatala-Gomez,&nbsp;Shakti Prasad Padhy,&nbsp;Marina Cagnon Trouche,&nbsp;Mohamed-Raouf Amara,&nbsp;Ivan Cheong,&nbsp;Zengshan Xing,&nbsp;Carole Diederichs*,&nbsp;Tze Chien Sum,&nbsp;Martial Duchamp,&nbsp;Yeng Ming Lam and Kedar Hippalgaonkar*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1350010.1021/acsnano.4c13500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Halide perovskites are positioned at the forefront of photonics, optoelectronics, and photovoltaics, owing to their excellent optical properties, with emission wavelengths ranging from blue to near-infrared, and their ease in manufacturing. However, their vast composition space and the corresponding emission energies are still not fully mapped, and guided high-throughput screening that allows for targeted material synthesis would be desirable. To this end, we use experimental data from the literature to build a machine learning model, predicting the band gap of 10,920 possible compositions. Focusing on one of the most promising candidates, Cs<sub>2</sub>PbSnI<sub>6</sub>, we validate the model by synthesizing and characterizing nanocrystals of the ordered 2-2 elpasolite (double perovskite) structure. The measured photoluminescence spectra agree with both ab initio GW band structure calculations and the machine learning-predicted band gap. Therefore, our study not only provides a machine learning model for the composition space of the halide perovskites but also introduces elpasolite Cs<sub>2</sub>PbSnI<sub>6</sub> as a promising candidate material for optoelectronic applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 6\",\"pages\":\"6107–6119 6107–6119\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c13500\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c13500","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卤化物钙钛矿位于光子学、光电子学和光伏学的前沿,因为它们具有优异的光学特性,发射波长范围从蓝色到近红外,而且易于制造。然而,它们巨大的组成空间和相应的发射能量仍然没有被完全映射,并且允许靶向材料合成的引导高通量筛选将是可取的。为此,我们利用文献中的实验数据建立了一个机器学习模型,预测了10920种可能组合的带隙。以最有希望的候选化合物之一Cs2PbSnI6为研究对象,我们通过合成和表征有序的2-2双钙钛矿结构的纳米晶体来验证该模型。测量的光致发光光谱与从头计算的GW带结构计算和机器学习预测的带隙一致。因此,我们的研究不仅提供了卤化物钙钛矿组成空间的机器学习模型,而且还介绍了elpasolite Cs2PbSnI6作为光电子应用的有前途的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of Machine Learning-Predicted Cs2PbSnI6 Double Perovskite Nanocrystals

Synthesis of Machine Learning-Predicted Cs2PbSnI6 Double Perovskite Nanocrystals

Halide perovskites are positioned at the forefront of photonics, optoelectronics, and photovoltaics, owing to their excellent optical properties, with emission wavelengths ranging from blue to near-infrared, and their ease in manufacturing. However, their vast composition space and the corresponding emission energies are still not fully mapped, and guided high-throughput screening that allows for targeted material synthesis would be desirable. To this end, we use experimental data from the literature to build a machine learning model, predicting the band gap of 10,920 possible compositions. Focusing on one of the most promising candidates, Cs2PbSnI6, we validate the model by synthesizing and characterizing nanocrystals of the ordered 2-2 elpasolite (double perovskite) structure. The measured photoluminescence spectra agree with both ab initio GW band structure calculations and the machine learning-predicted band gap. Therefore, our study not only provides a machine learning model for the composition space of the halide perovskites but also introduces elpasolite Cs2PbSnI6 as a promising candidate material for optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信