木质素超滤分离及自组装制备单分散光子材料纳米颗粒

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Junhao Long, Jiayue Lu, Liheng Chen*, Xueqing Qiu, Qiyu Liu* and Yanlin Qin*, 
{"title":"木质素超滤分离及自组装制备单分散光子材料纳米颗粒","authors":"Junhao Long,&nbsp;Jiayue Lu,&nbsp;Liheng Chen*,&nbsp;Xueqing Qiu,&nbsp;Qiyu Liu* and Yanlin Qin*,&nbsp;","doi":"10.1021/acsomega.4c1126010.1021/acsomega.4c11260","DOIUrl":null,"url":null,"abstract":"<p >Lignin, a natural aromatic polymer, is a promising candidate for sustainable photonic materials. However, its heterogeneity hinders uniform nanoparticle production. This study employs membrane ultrafiltration to fractionate alkaline lignin into five molecular weight fractions (UL1–UL5) and synthesizes lignin nanoparticles (LNPs) via antisolvent self-assembly. Low-molecular-weight fractions yielded highly uniform, monodisperse LNPs (PDI &lt; 0.1), while higher-molecular-weight fractions produced irregular particles. Notably, a strong correlation between lignin molecular weight and nanoparticle size was observed, with particle size decreasing as the molecular weight increased. Atomic force microscopy and density functional theory simulations provided insights into the intermolecular interactions of lignin fractions, showing that low-molecular-weight lignin exhibited stronger intermolecular forces, facilitating ordered self-assembly. These findings underscore the pivotal role of ultrafiltration in tailoring lignin properties and achieving precise control over nanoparticle formation. This study highlights the potential of ultrafiltration-based approaches for producing sustainable lignin-based photonic materials with customizable optical properties.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 6","pages":"6210–6219 6210–6219"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c11260","citationCount":"0","resultStr":"{\"title\":\"Lignin Ultrafiltration Fractionation and Self-Assembly to Monodisperse Nanoparticles for Photonic Materials\",\"authors\":\"Junhao Long,&nbsp;Jiayue Lu,&nbsp;Liheng Chen*,&nbsp;Xueqing Qiu,&nbsp;Qiyu Liu* and Yanlin Qin*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c1126010.1021/acsomega.4c11260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lignin, a natural aromatic polymer, is a promising candidate for sustainable photonic materials. However, its heterogeneity hinders uniform nanoparticle production. This study employs membrane ultrafiltration to fractionate alkaline lignin into five molecular weight fractions (UL1–UL5) and synthesizes lignin nanoparticles (LNPs) via antisolvent self-assembly. Low-molecular-weight fractions yielded highly uniform, monodisperse LNPs (PDI &lt; 0.1), while higher-molecular-weight fractions produced irregular particles. Notably, a strong correlation between lignin molecular weight and nanoparticle size was observed, with particle size decreasing as the molecular weight increased. Atomic force microscopy and density functional theory simulations provided insights into the intermolecular interactions of lignin fractions, showing that low-molecular-weight lignin exhibited stronger intermolecular forces, facilitating ordered self-assembly. These findings underscore the pivotal role of ultrafiltration in tailoring lignin properties and achieving precise control over nanoparticle formation. This study highlights the potential of ultrafiltration-based approaches for producing sustainable lignin-based photonic materials with customizable optical properties.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 6\",\"pages\":\"6210–6219 6210–6219\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c11260\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c11260\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c11260","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

木质素是一种天然的芳香族聚合物,是一种很有前途的可持续光子材料。然而,它的非均质性阻碍了均匀纳米颗粒的产生。本研究采用膜超滤法将碱性木质素分解成5个分子量的UL1-UL5,并通过抗溶剂自组装合成木质素纳米颗粒(LNPs)。低分子量馏分产生高度均匀、单分散的LNPs (PDI <;0.1),而更高分子量的分数产生不规则的颗粒。值得注意的是,木质素的分子量与纳米颗粒的大小有很强的相关性,颗粒大小随着分子量的增加而减小。原子力显微镜和密度泛函数理论模拟提供了木质素组分分子间相互作用的见解,表明低分子量木质素表现出更强的分子间作用力,促进有序的自组装。这些发现强调了超滤在调整木质素性质和实现对纳米颗粒形成的精确控制方面的关键作用。这项研究强调了基于超滤的方法在生产具有可定制光学特性的可持续木质素光子材料方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lignin Ultrafiltration Fractionation and Self-Assembly to Monodisperse Nanoparticles for Photonic Materials

Lignin, a natural aromatic polymer, is a promising candidate for sustainable photonic materials. However, its heterogeneity hinders uniform nanoparticle production. This study employs membrane ultrafiltration to fractionate alkaline lignin into five molecular weight fractions (UL1–UL5) and synthesizes lignin nanoparticles (LNPs) via antisolvent self-assembly. Low-molecular-weight fractions yielded highly uniform, monodisperse LNPs (PDI < 0.1), while higher-molecular-weight fractions produced irregular particles. Notably, a strong correlation between lignin molecular weight and nanoparticle size was observed, with particle size decreasing as the molecular weight increased. Atomic force microscopy and density functional theory simulations provided insights into the intermolecular interactions of lignin fractions, showing that low-molecular-weight lignin exhibited stronger intermolecular forces, facilitating ordered self-assembly. These findings underscore the pivotal role of ultrafiltration in tailoring lignin properties and achieving precise control over nanoparticle formation. This study highlights the potential of ultrafiltration-based approaches for producing sustainable lignin-based photonic materials with customizable optical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信