二维nb3c2基MXenes作为锂离子电池负极材料的理论研究

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hadiqa Naaz, Fouzia Perveen Malik*, Ayyaz Mahmood and Ahmad Irfan, 
{"title":"二维nb3c2基MXenes作为锂离子电池负极材料的理论研究","authors":"Hadiqa Naaz,&nbsp;Fouzia Perveen Malik*,&nbsp;Ayyaz Mahmood and Ahmad Irfan,&nbsp;","doi":"10.1021/acsomega.4c0147310.1021/acsomega.4c01473","DOIUrl":null,"url":null,"abstract":"<p >MXenes, two-dimensional transition metal carbides/nitrides, have gained substantial interest owing to their distinctive properties. This study utilizes density functional theory (DFT) calculations to study the electronic, magnetic, and thermoelectric properties of pristine, molybdenum (Mo), and Te-doped Nb<sub>3</sub>C<sub>2</sub> monolayer MXenes. Both doped structures exhibit metallic characteristics with indirect band gaps, as revealed by band structure and density of states (DOS) analysis. This fulfills a crucial requirement for electrode applications in lithium-ion batteries (LIBs). Pristine Nb<sub>3</sub>C<sub>2</sub> displays diamagnetic, while Mo doping induces ferromagnetism and Te doping leads to ferrimagnetism behavior. Notably, doping significantly impacts electronic and thermoelectric properties, Seebeck coefficient, electrical conductivity, and thermal conductivity, which demonstrably depend on the chosen structure. Te-doped Nb<sub>3</sub>C<sub>2</sub> consistently exhibits a larger bandgap, less Seebeck coefficient, and lower thermal conductivity compared to Mo-doped Nb<sub>3</sub>C<sub>2</sub> attributed to a narrow bandgap, exceptionally high Seebeck coefficient, and high thermal and electrical conductivity. Additionally, positive open-circuit voltage (OCV) values suggest favorable lithium-ion intercalation for all materials. Theoretical capacities of 592, 745, and 668 mAh/g are computed for pristine, Mo-doped, and Te-doped Nb<sub>3</sub>C<sub>2</sub>, respectively, comparable to reported values for pristine V<sub>3</sub>C<sub>2</sub> (606.42 mAh/g). These results suggest that Mo- and Te-doped Nb<sub>3</sub>C<sub>2</sub> MXenes exhibit potential as anode materials for LIBs due to their improved electronic conductivity, reduced operating voltage, and comparable theoretical lithium storage capacity.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 6","pages":"5283–5295 5283–5295"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c01473","citationCount":"0","resultStr":"{\"title\":\"Investigation of 2D Nb3C2-Based MXenes as the Anode Material for LIBs: A Theoretical Study\",\"authors\":\"Hadiqa Naaz,&nbsp;Fouzia Perveen Malik*,&nbsp;Ayyaz Mahmood and Ahmad Irfan,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0147310.1021/acsomega.4c01473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >MXenes, two-dimensional transition metal carbides/nitrides, have gained substantial interest owing to their distinctive properties. This study utilizes density functional theory (DFT) calculations to study the electronic, magnetic, and thermoelectric properties of pristine, molybdenum (Mo), and Te-doped Nb<sub>3</sub>C<sub>2</sub> monolayer MXenes. Both doped structures exhibit metallic characteristics with indirect band gaps, as revealed by band structure and density of states (DOS) analysis. This fulfills a crucial requirement for electrode applications in lithium-ion batteries (LIBs). Pristine Nb<sub>3</sub>C<sub>2</sub> displays diamagnetic, while Mo doping induces ferromagnetism and Te doping leads to ferrimagnetism behavior. Notably, doping significantly impacts electronic and thermoelectric properties, Seebeck coefficient, electrical conductivity, and thermal conductivity, which demonstrably depend on the chosen structure. Te-doped Nb<sub>3</sub>C<sub>2</sub> consistently exhibits a larger bandgap, less Seebeck coefficient, and lower thermal conductivity compared to Mo-doped Nb<sub>3</sub>C<sub>2</sub> attributed to a narrow bandgap, exceptionally high Seebeck coefficient, and high thermal and electrical conductivity. Additionally, positive open-circuit voltage (OCV) values suggest favorable lithium-ion intercalation for all materials. Theoretical capacities of 592, 745, and 668 mAh/g are computed for pristine, Mo-doped, and Te-doped Nb<sub>3</sub>C<sub>2</sub>, respectively, comparable to reported values for pristine V<sub>3</sub>C<sub>2</sub> (606.42 mAh/g). These results suggest that Mo- and Te-doped Nb<sub>3</sub>C<sub>2</sub> MXenes exhibit potential as anode materials for LIBs due to their improved electronic conductivity, reduced operating voltage, and comparable theoretical lithium storage capacity.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 6\",\"pages\":\"5283–5295 5283–5295\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c01473\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c01473\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c01473","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MXenes是一种二维过渡金属碳化物/氮化物,由于其独特的性质而引起了人们的极大兴趣。本研究利用密度泛函理论(DFT)计算研究了原始、钼(Mo)和te掺杂Nb3C2单层MXenes的电子、磁性和热电性质。通过带结构和态密度(DOS)分析,两种掺杂结构均表现出间接带隙的金属特征。这满足了锂离子电池(lib)电极应用的一个关键要求。原始Nb3C2表现为抗磁性,Mo掺杂导致铁磁性,Te掺杂导致铁磁性。值得注意的是,掺杂会显著影响电子和热电性能、塞贝克系数、电导率和导热性,这显然取决于所选择的结构。te掺杂的Nb3C2具有更大的带隙、更小的塞贝克系数和更低的导热系数,与mo掺杂的Nb3C2相比,te掺杂的Nb3C2具有更窄的带隙、极高的塞贝克系数和更高的导热系数。此外,正开路电压(OCV)值表明有利于所有材料的锂离子嵌入。原始、掺钼和掺te的Nb3C2的理论容量分别为592、745和668 mAh/g,与原始V3C2的报告值(606.42 mAh/g)相当。这些结果表明,Mo和te掺杂的Nb3C2 MXenes由于其提高的电子导电性,降低的工作电压和相当的理论锂存储容量而具有作为锂离子电池阳极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of 2D Nb3C2-Based MXenes as the Anode Material for LIBs: A Theoretical Study

MXenes, two-dimensional transition metal carbides/nitrides, have gained substantial interest owing to their distinctive properties. This study utilizes density functional theory (DFT) calculations to study the electronic, magnetic, and thermoelectric properties of pristine, molybdenum (Mo), and Te-doped Nb3C2 monolayer MXenes. Both doped structures exhibit metallic characteristics with indirect band gaps, as revealed by band structure and density of states (DOS) analysis. This fulfills a crucial requirement for electrode applications in lithium-ion batteries (LIBs). Pristine Nb3C2 displays diamagnetic, while Mo doping induces ferromagnetism and Te doping leads to ferrimagnetism behavior. Notably, doping significantly impacts electronic and thermoelectric properties, Seebeck coefficient, electrical conductivity, and thermal conductivity, which demonstrably depend on the chosen structure. Te-doped Nb3C2 consistently exhibits a larger bandgap, less Seebeck coefficient, and lower thermal conductivity compared to Mo-doped Nb3C2 attributed to a narrow bandgap, exceptionally high Seebeck coefficient, and high thermal and electrical conductivity. Additionally, positive open-circuit voltage (OCV) values suggest favorable lithium-ion intercalation for all materials. Theoretical capacities of 592, 745, and 668 mAh/g are computed for pristine, Mo-doped, and Te-doped Nb3C2, respectively, comparable to reported values for pristine V3C2 (606.42 mAh/g). These results suggest that Mo- and Te-doped Nb3C2 MXenes exhibit potential as anode materials for LIBs due to their improved electronic conductivity, reduced operating voltage, and comparable theoretical lithium storage capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信