热敏微凝胶悬浮液平台剪切模量的自由能模型

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Maxime Bergman, Yixuan Xu, José Muñéton Díaz, Chi Zhang, Thomas G. Mason and Frank Scheffold*, 
{"title":"热敏微凝胶悬浮液平台剪切模量的自由能模型","authors":"Maxime Bergman,&nbsp;Yixuan Xu,&nbsp;José Muñéton Díaz,&nbsp;Chi Zhang,&nbsp;Thomas G. Mason and Frank Scheffold*,&nbsp;","doi":"10.1021/acs.langmuir.4c0452810.1021/acs.langmuir.4c04528","DOIUrl":null,"url":null,"abstract":"<p >Polymer microgels exhibit intriguing macroscopic flow properties arising from their unique microscopic structure. Microgel colloids usually comprise a cross-linked polymer network with a radially decaying density profile, resulting in a dense core surrounded by a fuzzy corona. Notably, microgels synthesized from poly(<i>N</i>-isopropylacrylamide) (PNIPAM) are thermoresponsive and capable of adjusting their size and density profile based on temperature. Above the lower critical solution temperature (<i></i><math><msub><mrow><mi>T</mi></mrow><mrow><mi>LCST</mi></mrow></msub><mo>∼</mo><mn>33</mn></math> °C), the microgel’s polymer network collapses, expulsing water through a reversible process. Conversely, below 33 °C, the microgel’s network swells, becoming highly compressible and allowing overpacking to effective volume fractions exceeding one. Under conditions of dense packing, microgels undergo deformation in distinct stages: corona compression and faceting, interpenetration, and finally, isotropic compression. Each stage exhibits a characteristic signature in the dense microgel suspensions’ yield stress and elastic modulus. Here, we introduce a model for the linear elastic shear modulus by minimizing a quasi-equilibrium free energy, encompassing all relevant energetic contributions. We validate our model by comparing its predictions to experimental results from oscillatory shear rheology tests on microgel suspensions at different densities and temperatures. Our findings demonstrate that combining macroscopic rheological measurements with the model allows for temperature-dependent characterization of polymer interaction parameters.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 6","pages":"4084–4091 4084–4091"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Free Energy Model for the Plateau Shear Modulus in Thermosensitive Microgel Suspensions\",\"authors\":\"Maxime Bergman,&nbsp;Yixuan Xu,&nbsp;José Muñéton Díaz,&nbsp;Chi Zhang,&nbsp;Thomas G. Mason and Frank Scheffold*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c0452810.1021/acs.langmuir.4c04528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer microgels exhibit intriguing macroscopic flow properties arising from their unique microscopic structure. Microgel colloids usually comprise a cross-linked polymer network with a radially decaying density profile, resulting in a dense core surrounded by a fuzzy corona. Notably, microgels synthesized from poly(<i>N</i>-isopropylacrylamide) (PNIPAM) are thermoresponsive and capable of adjusting their size and density profile based on temperature. Above the lower critical solution temperature (<i></i><math><msub><mrow><mi>T</mi></mrow><mrow><mi>LCST</mi></mrow></msub><mo>∼</mo><mn>33</mn></math> °C), the microgel’s polymer network collapses, expulsing water through a reversible process. Conversely, below 33 °C, the microgel’s network swells, becoming highly compressible and allowing overpacking to effective volume fractions exceeding one. Under conditions of dense packing, microgels undergo deformation in distinct stages: corona compression and faceting, interpenetration, and finally, isotropic compression. Each stage exhibits a characteristic signature in the dense microgel suspensions’ yield stress and elastic modulus. Here, we introduce a model for the linear elastic shear modulus by minimizing a quasi-equilibrium free energy, encompassing all relevant energetic contributions. We validate our model by comparing its predictions to experimental results from oscillatory shear rheology tests on microgel suspensions at different densities and temperatures. Our findings demonstrate that combining macroscopic rheological measurements with the model allows for temperature-dependent characterization of polymer interaction parameters.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 6\",\"pages\":\"4084–4091 4084–4091\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04528\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04528","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物微凝胶由于其独特的微观结构而表现出有趣的宏观流动特性。微凝胶胶体通常由一个具有径向衰减密度的交联聚合物网络组成,形成一个被模糊电晕包围的致密核。值得注意的是,由聚n -异丙基丙烯酰胺(PNIPAM)合成的微凝胶具有热响应性,并且能够根据温度调节其尺寸和密度分布。高于较低的临界溶液温度(TLCST ~ 33°C),微凝胶的聚合物网络崩溃,通过可逆过程排出水。相反,在低于33℃时,微凝胶网络膨胀,变得高度可压缩,并允许过度填充,有效体积分数超过1。在致密堆积的条件下,微凝胶在不同的阶段发生变形:电晕压缩和面化,相互渗透,最后是各向同性压缩。每个阶段在致密微凝胶悬浮液的屈服应力和弹性模量上都表现出一个特征特征。在这里,我们通过最小化准平衡自由能来引入线性弹性剪切模量的模型,包括所有相关的能量贡献。我们通过将模型的预测结果与不同密度和温度下微凝胶悬浮液的振荡剪切流变试验结果进行比较,验证了模型的有效性。我们的研究结果表明,将宏观流变测量与模型相结合,可以实现聚合物相互作用参数的温度依赖性表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Free Energy Model for the Plateau Shear Modulus in Thermosensitive Microgel Suspensions

A Free Energy Model for the Plateau Shear Modulus in Thermosensitive Microgel Suspensions

Polymer microgels exhibit intriguing macroscopic flow properties arising from their unique microscopic structure. Microgel colloids usually comprise a cross-linked polymer network with a radially decaying density profile, resulting in a dense core surrounded by a fuzzy corona. Notably, microgels synthesized from poly(N-isopropylacrylamide) (PNIPAM) are thermoresponsive and capable of adjusting their size and density profile based on temperature. Above the lower critical solution temperature (TLCST33 °C), the microgel’s polymer network collapses, expulsing water through a reversible process. Conversely, below 33 °C, the microgel’s network swells, becoming highly compressible and allowing overpacking to effective volume fractions exceeding one. Under conditions of dense packing, microgels undergo deformation in distinct stages: corona compression and faceting, interpenetration, and finally, isotropic compression. Each stage exhibits a characteristic signature in the dense microgel suspensions’ yield stress and elastic modulus. Here, we introduce a model for the linear elastic shear modulus by minimizing a quasi-equilibrium free energy, encompassing all relevant energetic contributions. We validate our model by comparing its predictions to experimental results from oscillatory shear rheology tests on microgel suspensions at different densities and temperatures. Our findings demonstrate that combining macroscopic rheological measurements with the model allows for temperature-dependent characterization of polymer interaction parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信