利用热孔提取技术实现片上全紫外波段光电探测器

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sougata Karmakar, Soham Ash, Sinorul Haque, N. K. Murugasenapathi, M. Sridevi, Indrajeet Mandal, Gurupada Ghorai, A. V. Muhammed Ali, Nitya Nand Gosvami, N. M. Anoop Krishnan, Sayan Kanungo, Manohar Chirumamilla, Tamilarasan Palanisamy, Rajiv K. Singh, Amarnath R. Allu* and K. D. M. Rao*, 
{"title":"利用热孔提取技术实现片上全紫外波段光电探测器","authors":"Sougata Karmakar,&nbsp;Soham Ash,&nbsp;Sinorul Haque,&nbsp;N. K. Murugasenapathi,&nbsp;M. Sridevi,&nbsp;Indrajeet Mandal,&nbsp;Gurupada Ghorai,&nbsp;A. V. Muhammed Ali,&nbsp;Nitya Nand Gosvami,&nbsp;N. M. Anoop Krishnan,&nbsp;Sayan Kanungo,&nbsp;Manohar Chirumamilla,&nbsp;Tamilarasan Palanisamy,&nbsp;Rajiv K. Singh,&nbsp;Amarnath R. Allu* and K. D. M. Rao*,&nbsp;","doi":"10.1021/acsnano.4c1610610.1021/acsnano.4c16106","DOIUrl":null,"url":null,"abstract":"<p >Achieving on-chip, full-UV-band photodetection across UV–A (315–400 nm), UV–B (280–315 nm), and UV–C (100–280 nm) bands remains challenging due to the limitations in traditional materials, which often have narrow detection ranges and require high operating voltages. In this study, we introduce a self-driven, on-chip photodetector based on a heterostructure of hybrid gold nanoislands (Au NIs) embedded in H-glass and cesium bismuth iodide (Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>). The Au NIs act as catalytic nucleation sites, enhancing crystallinity and facilitating the vertical alignment of the interconnected Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> petal-like thin film. A built-in electric field developed at the heterojunction efficiently separates hot holes generated in the Au NIs under UV illumination, transferring them to the valence band of Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> and minimizing recombination losses. The device demonstrates an ultrahigh open-circuit voltage of 0.6 V, exceptional responsivity of 0.88 A/W, and a detection threshold of 90 nW/cm<sup>2</sup>, outperforming the existing thin film-based UV photodetectors under self-driven mode. Long-term stability tests confirmed robust operational reliability under ambient conditions for up to eight months. This architecture, driven by efficient hot hole dynamics, represents a significant advancement for full-UV-band optoelectronics with promising applications in environmental monitoring, flame detection, biomedical diagnostics, and secure communication systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 6","pages":"6309–6319 6309–6319"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Chip Full-UV-Band Photodetectors Enabled by Hot Hole Extraction\",\"authors\":\"Sougata Karmakar,&nbsp;Soham Ash,&nbsp;Sinorul Haque,&nbsp;N. K. Murugasenapathi,&nbsp;M. Sridevi,&nbsp;Indrajeet Mandal,&nbsp;Gurupada Ghorai,&nbsp;A. V. Muhammed Ali,&nbsp;Nitya Nand Gosvami,&nbsp;N. M. Anoop Krishnan,&nbsp;Sayan Kanungo,&nbsp;Manohar Chirumamilla,&nbsp;Tamilarasan Palanisamy,&nbsp;Rajiv K. Singh,&nbsp;Amarnath R. Allu* and K. D. M. Rao*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1610610.1021/acsnano.4c16106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving on-chip, full-UV-band photodetection across UV–A (315–400 nm), UV–B (280–315 nm), and UV–C (100–280 nm) bands remains challenging due to the limitations in traditional materials, which often have narrow detection ranges and require high operating voltages. In this study, we introduce a self-driven, on-chip photodetector based on a heterostructure of hybrid gold nanoislands (Au NIs) embedded in H-glass and cesium bismuth iodide (Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>). The Au NIs act as catalytic nucleation sites, enhancing crystallinity and facilitating the vertical alignment of the interconnected Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> petal-like thin film. A built-in electric field developed at the heterojunction efficiently separates hot holes generated in the Au NIs under UV illumination, transferring them to the valence band of Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> and minimizing recombination losses. The device demonstrates an ultrahigh open-circuit voltage of 0.6 V, exceptional responsivity of 0.88 A/W, and a detection threshold of 90 nW/cm<sup>2</sup>, outperforming the existing thin film-based UV photodetectors under self-driven mode. Long-term stability tests confirmed robust operational reliability under ambient conditions for up to eight months. This architecture, driven by efficient hot hole dynamics, represents a significant advancement for full-UV-band optoelectronics with promising applications in environmental monitoring, flame detection, biomedical diagnostics, and secure communication systems.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 6\",\"pages\":\"6309–6319 6309–6319\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c16106\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c16106","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在UV-A (315-400 nm)、UV-B (280-315 nm)和UV-C (100-280 nm)波段上实现片上全紫外波段光检测仍然具有挑战性,这是由于传统材料的限制,这些材料通常具有狭窄的检测范围,并且需要高工作电压。在这项研究中,我们介绍了一种自驱动的片上光电探测器,该探测器基于嵌入h玻璃和碘化铯铋(Cs3Bi2I9)的杂化金纳米岛(Au NIs)异质结构。Au - NIs作为催化成核位点,提高了结晶度,促进了互连的Cs3Bi2I9花瓣状薄膜的垂直排列。在异质结处建立的内置电场有效地分离了紫外光照射下Au NIs中产生的热空穴,将它们转移到Cs3Bi2I9的价带中,并最大限度地减少了复合损失。该器件具有0.6 V的超高开路电压、0.88 A/W的超高响应率和90 nW/cm2的检测阈值,在自驱动模式下优于现有的基于薄膜的紫外光电探测器。长期稳定性测试证实了在环境条件下长达8个月的稳健运行可靠性。该架构由高效热孔动力学驱动,代表了全紫外波段光电子学的重大进步,在环境监测,火焰检测,生物医学诊断和安全通信系统中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On-Chip Full-UV-Band Photodetectors Enabled by Hot Hole Extraction

On-Chip Full-UV-Band Photodetectors Enabled by Hot Hole Extraction

Achieving on-chip, full-UV-band photodetection across UV–A (315–400 nm), UV–B (280–315 nm), and UV–C (100–280 nm) bands remains challenging due to the limitations in traditional materials, which often have narrow detection ranges and require high operating voltages. In this study, we introduce a self-driven, on-chip photodetector based on a heterostructure of hybrid gold nanoislands (Au NIs) embedded in H-glass and cesium bismuth iodide (Cs3Bi2I9). The Au NIs act as catalytic nucleation sites, enhancing crystallinity and facilitating the vertical alignment of the interconnected Cs3Bi2I9 petal-like thin film. A built-in electric field developed at the heterojunction efficiently separates hot holes generated in the Au NIs under UV illumination, transferring them to the valence band of Cs3Bi2I9 and minimizing recombination losses. The device demonstrates an ultrahigh open-circuit voltage of 0.6 V, exceptional responsivity of 0.88 A/W, and a detection threshold of 90 nW/cm2, outperforming the existing thin film-based UV photodetectors under self-driven mode. Long-term stability tests confirmed robust operational reliability under ambient conditions for up to eight months. This architecture, driven by efficient hot hole dynamics, represents a significant advancement for full-UV-band optoelectronics with promising applications in environmental monitoring, flame detection, biomedical diagnostics, and secure communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信