热模拟,以增强对3d打印组件的创新熨烫过程的控制

Q1 Chemical Engineering
Andrea Montalti, Alessandro Ghini, Gian Maria Santi, Alfredo Liverani
{"title":"热模拟,以增强对3d打印组件的创新熨烫过程的控制","authors":"Andrea Montalti,&nbsp;Alessandro Ghini,&nbsp;Gian Maria Santi,&nbsp;Alfredo Liverani","doi":"10.1016/j.ijft.2025.101137","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates an innovative surface finishing process for 3D-printed components using Material Extrusion (MEX). By applying controlled heating to the outer layer with a heated, semi-spherical tip, surface quality can be enhanced without adding material, effectively reducing imperfections caused by nozzle deposition. Using a prototype tool with distinct thermal properties, simulations were conducted to assess the optimal process parameters, including tool temperature, movement speed, and depth of influence within the material. Thermal simulations of the tool were performed to analyse temperature distribution and efficiency, identifying potential heat losses. Additionally, interactions between the tool tip and the material were simulated, highlighting temperature distribution at various depths. The simulations reliably model the tool's performance, providing a solid foundation for precise process parameter calibration while minimising reliance on experimental testing. Analyses conducted on PLA, PETG, ABS, PEEK, and PEKK demonstrated a clear correlation between speed and temperature in achieving optimal results. For materials with a high glass transition temperature, either a lower speed or a higher tool temperature is required, depending on the material's thermal properties.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101137"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal simulation for enhanced control in innovative ironing processes on 3D-printed components\",\"authors\":\"Andrea Montalti,&nbsp;Alessandro Ghini,&nbsp;Gian Maria Santi,&nbsp;Alfredo Liverani\",\"doi\":\"10.1016/j.ijft.2025.101137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates an innovative surface finishing process for 3D-printed components using Material Extrusion (MEX). By applying controlled heating to the outer layer with a heated, semi-spherical tip, surface quality can be enhanced without adding material, effectively reducing imperfections caused by nozzle deposition. Using a prototype tool with distinct thermal properties, simulations were conducted to assess the optimal process parameters, including tool temperature, movement speed, and depth of influence within the material. Thermal simulations of the tool were performed to analyse temperature distribution and efficiency, identifying potential heat losses. Additionally, interactions between the tool tip and the material were simulated, highlighting temperature distribution at various depths. The simulations reliably model the tool's performance, providing a solid foundation for precise process parameter calibration while minimising reliance on experimental testing. Analyses conducted on PLA, PETG, ABS, PEEK, and PEKK demonstrated a clear correlation between speed and temperature in achieving optimal results. For materials with a high glass transition temperature, either a lower speed or a higher tool temperature is required, depending on the material's thermal properties.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"26 \",\"pages\":\"Article 101137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725000849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了一种使用材料挤压(MEX)的3d打印组件的创新表面加工工艺。通过使用加热的半球形尖端对外层进行控制加热,可以在不添加材料的情况下提高表面质量,有效减少喷嘴沉积造成的缺陷。使用具有不同热性能的原型工具,进行模拟以评估最佳工艺参数,包括工具温度,移动速度和材料内的影响深度。对该工具进行了热模拟,以分析温度分布和效率,确定潜在的热损失。此外,模拟了刀尖与材料之间的相互作用,突出了不同深度下的温度分布。仿真可靠地模拟了工具的性能,为精确的工艺参数校准提供了坚实的基础,同时最大限度地减少了对实验测试的依赖。对PLA、PETG、ABS、PEEK和PEKK的分析表明,在达到最佳效果时,速度和温度之间存在明显的相关性。对于玻璃化转变温度较高的材料,根据材料的热性能,需要较低的速度或较高的刀具温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal simulation for enhanced control in innovative ironing processes on 3D-printed components
This study investigates an innovative surface finishing process for 3D-printed components using Material Extrusion (MEX). By applying controlled heating to the outer layer with a heated, semi-spherical tip, surface quality can be enhanced without adding material, effectively reducing imperfections caused by nozzle deposition. Using a prototype tool with distinct thermal properties, simulations were conducted to assess the optimal process parameters, including tool temperature, movement speed, and depth of influence within the material. Thermal simulations of the tool were performed to analyse temperature distribution and efficiency, identifying potential heat losses. Additionally, interactions between the tool tip and the material were simulated, highlighting temperature distribution at various depths. The simulations reliably model the tool's performance, providing a solid foundation for precise process parameter calibration while minimising reliance on experimental testing. Analyses conducted on PLA, PETG, ABS, PEEK, and PEKK demonstrated a clear correlation between speed and temperature in achieving optimal results. For materials with a high glass transition temperature, either a lower speed or a higher tool temperature is required, depending on the material's thermal properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信