两类图的电阻距离和Kirchhoff指数的计算

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Yaxin Jiang, Yujun Yang
{"title":"两类图的电阻距离和Kirchhoff指数的计算","authors":"Yaxin Jiang,&nbsp;Yujun Yang","doi":"10.1016/j.amc.2025.129354","DOIUrl":null,"url":null,"abstract":"<div><div>For any two vertices <em>u</em> and <em>v</em> of a connected graph <em>G</em>, the resistance distance between <em>u</em> and <em>v</em> is defined as the effective resistance between them in the corresponding electrical network created by placing a unit resistor on each edge of <em>G</em>. The Kirchhoff index of <em>G</em> is defined as the sum of resistance distances between all pairs of vertices in <em>G</em>. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> be the graph obtained from the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> by deleting an edge. In this paper, we consider two classes of graphs formed by <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, namely the string graph of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> and the ring graph of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, which are denoted by <span><math><mi>S</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>R</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, respectively. By using combinatorial and electrical network approaches, we obtain the formulae for resistance distances and Kirchhoff indices of <span><math><mi>S</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>R</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, which generalizes the results by Sardar et al. (2024) <span><span>[25]</span></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"496 ","pages":"Article 129354"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of resistance distances and Kirchhoff indices for two classes of graphs\",\"authors\":\"Yaxin Jiang,&nbsp;Yujun Yang\",\"doi\":\"10.1016/j.amc.2025.129354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any two vertices <em>u</em> and <em>v</em> of a connected graph <em>G</em>, the resistance distance between <em>u</em> and <em>v</em> is defined as the effective resistance between them in the corresponding electrical network created by placing a unit resistor on each edge of <em>G</em>. The Kirchhoff index of <em>G</em> is defined as the sum of resistance distances between all pairs of vertices in <em>G</em>. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> be the graph obtained from the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> by deleting an edge. In this paper, we consider two classes of graphs formed by <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, namely the string graph of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> and the ring graph of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, which are denoted by <span><math><mi>S</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>R</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, respectively. By using combinatorial and electrical network approaches, we obtain the formulae for resistance distances and Kirchhoff indices of <span><math><mi>S</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>R</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, which generalizes the results by Sardar et al. (2024) <span><span>[25]</span></span>.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"496 \",\"pages\":\"Article 129354\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325000815\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325000815","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于连通图G的任意两个顶点u和v,将u和v之间的电阻距离定义为在G的每条边上放置一个单位电阻所形成的相应电网络中它们之间的有效电阻。G的Kirchhoff指数定义为G中所有顶点对之间的电阻距离之和。设Kr−为完全图Kr删除一条边后得到的图。本文考虑由Kr−构成的两类图,即Kr−的弦图和Kr−的环图,分别用S(Kr−,n)和R(Kr−,n)表示。通过组合和电网络方法,我们得到了S(Kr−,n)和R(Kr−,n)的电阻距离和Kirchhoff指数公式,推广了Sardar et al.(2024)[25]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of resistance distances and Kirchhoff indices for two classes of graphs
For any two vertices u and v of a connected graph G, the resistance distance between u and v is defined as the effective resistance between them in the corresponding electrical network created by placing a unit resistor on each edge of G. The Kirchhoff index of G is defined as the sum of resistance distances between all pairs of vertices in G. Let Kr be the graph obtained from the complete graph Kr by deleting an edge. In this paper, we consider two classes of graphs formed by Kr, namely the string graph of Kr and the ring graph of Kr, which are denoted by S(Kr,n) and R(Kr,n), respectively. By using combinatorial and electrical network approaches, we obtain the formulae for resistance distances and Kirchhoff indices of S(Kr,n) and R(Kr,n), which generalizes the results by Sardar et al. (2024) [25].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信