基于熵特征参数法的球化等级无损评价

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
Jinlong Li , Zenghua Liu , Zongjian Zhang , Yang Zheng , Cunfu He
{"title":"基于熵特征参数法的球化等级无损评价","authors":"Jinlong Li ,&nbsp;Zenghua Liu ,&nbsp;Zongjian Zhang ,&nbsp;Yang Zheng ,&nbsp;Cunfu He","doi":"10.1016/j.apacoust.2025.110599","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its excellent mechanical properties, 15CrMo steel is widely used in critical components exposed for high-temperature and high-pressure conditions. Long term high-temperature will increase the spheroidization possibility and even cause serious safety accidents. However, characterization of the spheroidization grades is a very difficult problem. To quantitatively evaluate the spheroidization grades of 15CrMo steel, destructive testing methods are used to determine spheroidization grades. This study uses the ultrasonic backscattering method to detect the spheroidization grades. The ultrasonic testing platform collects the backscattering signals, and the typical characteristic parameters and entropy characteristic parameters of the backscattering signals are extracted. New entropy characteristic parameters, including the information entropy, conditional entropy, sample entropy, fuzzy entropy, permutation entropy, approximate entropy, power spectral entropy, and singular spectrum entropy, are introduced to evaluate the spheroidization grades of 15CrMo steel. It is found that the proposed entropy characteristic parameters can reflect the changes in the microstructure under different spheroidization grades. Therefore, the entropy characteristic parameters of ultrasonic backscattering signals are advantageous for evaluating the spheroidization grades of 15CrMo steel.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"233 ","pages":"Article 110599"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondestructive evaluation of spheroidization grades based on entropy characteristic parameters method\",\"authors\":\"Jinlong Li ,&nbsp;Zenghua Liu ,&nbsp;Zongjian Zhang ,&nbsp;Yang Zheng ,&nbsp;Cunfu He\",\"doi\":\"10.1016/j.apacoust.2025.110599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to its excellent mechanical properties, 15CrMo steel is widely used in critical components exposed for high-temperature and high-pressure conditions. Long term high-temperature will increase the spheroidization possibility and even cause serious safety accidents. However, characterization of the spheroidization grades is a very difficult problem. To quantitatively evaluate the spheroidization grades of 15CrMo steel, destructive testing methods are used to determine spheroidization grades. This study uses the ultrasonic backscattering method to detect the spheroidization grades. The ultrasonic testing platform collects the backscattering signals, and the typical characteristic parameters and entropy characteristic parameters of the backscattering signals are extracted. New entropy characteristic parameters, including the information entropy, conditional entropy, sample entropy, fuzzy entropy, permutation entropy, approximate entropy, power spectral entropy, and singular spectrum entropy, are introduced to evaluate the spheroidization grades of 15CrMo steel. It is found that the proposed entropy characteristic parameters can reflect the changes in the microstructure under different spheroidization grades. Therefore, the entropy characteristic parameters of ultrasonic backscattering signals are advantageous for evaluating the spheroidization grades of 15CrMo steel.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":\"233 \",\"pages\":\"Article 110599\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X25000714\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25000714","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

15CrMo钢由于其优异的力学性能,被广泛用于暴露在高温高压条件下的关键部件。长期高温会增加球化的可能性,甚至造成严重的安全事故。然而,球化等级的表征是一个非常困难的问题。为了定量评价15CrMo钢的球化等级,采用破坏性试验方法确定了球化等级。本研究采用超声后向散射法检测球化等级。超声波检测平台采集后向散射信号,提取后向散射信号的典型特征参数和熵特征参数。引入信息熵、条件熵、样本熵、模糊熵、排列熵、近似熵、功率谱熵和奇异谱熵等新的熵特征参数来评价15CrMo钢的球化等级。结果表明,所提出的熵特征参数能够反映不同球化等级下微观组织的变化。因此,超声后向散射信号的熵特征参数有利于评价15CrMo钢的球化等级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondestructive evaluation of spheroidization grades based on entropy characteristic parameters method
Due to its excellent mechanical properties, 15CrMo steel is widely used in critical components exposed for high-temperature and high-pressure conditions. Long term high-temperature will increase the spheroidization possibility and even cause serious safety accidents. However, characterization of the spheroidization grades is a very difficult problem. To quantitatively evaluate the spheroidization grades of 15CrMo steel, destructive testing methods are used to determine spheroidization grades. This study uses the ultrasonic backscattering method to detect the spheroidization grades. The ultrasonic testing platform collects the backscattering signals, and the typical characteristic parameters and entropy characteristic parameters of the backscattering signals are extracted. New entropy characteristic parameters, including the information entropy, conditional entropy, sample entropy, fuzzy entropy, permutation entropy, approximate entropy, power spectral entropy, and singular spectrum entropy, are introduced to evaluate the spheroidization grades of 15CrMo steel. It is found that the proposed entropy characteristic parameters can reflect the changes in the microstructure under different spheroidization grades. Therefore, the entropy characteristic parameters of ultrasonic backscattering signals are advantageous for evaluating the spheroidization grades of 15CrMo steel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信