Minseop Lee , Ji-Ho Park , Dong-Jun Park , Seung-Min Paek
{"title":"一种具有高能量密度和增强锂离子电池长期稳定性的Ge/GeO2/钛酸盐纳米复合材料","authors":"Minseop Lee , Ji-Ho Park , Dong-Jun Park , Seung-Min Paek","doi":"10.1016/j.jssc.2025.125256","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel Ge/GeO<sub>2</sub>/Titanate composite to address the limitations of conventional Ge-based anode materials, including volume expansion, particle aggregation, and unstable SEI formation during repeated charge–discharge cycles. By combining two-dimensional (2D) layered titanate nanosheets with Ge/GeO<sub>2</sub> nanoparticles, the composite achieves enhanced structural stability and outstanding electrochemical performance. The 2D titanate nanosheets effectively mitigate the volume expansion of Ge/GeO<sub>2</sub> nanoparticles, prevent particle aggregation, and maintain the long-term structural stability of the electrode while enhancing lithium-ion and electron transport pathways. Moreover, the thin amorphous GeO<sub>2</sub> layer on the Ge/GeO<sub>2</sub> nanoparticles suppresses excessive reactions with the electrolyte, promotes uniform and stable SEI formation, reduces irreversible capacity loss, and further contributes to the electrode's long-term stability. The Ge/GeO<sub>2</sub>/Titanate composite exhibits exceptional performance, retaining a high capacity of 925.8 mAh/g (∼94 % of the theoretical capacity) after 350 cycles at 0.1 A/g. It also achieves capacity retention rates of 88.3 % and 73.4 % after 1200 charge–discharge cycles at high current densities of 2.0 A/g and 5.0 A/g, respectively.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125256"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Ge/GeO2/Titanate nanocomposite with high energy density and enhanced long-term stability for lithium-ion batteries\",\"authors\":\"Minseop Lee , Ji-Ho Park , Dong-Jun Park , Seung-Min Paek\",\"doi\":\"10.1016/j.jssc.2025.125256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a novel Ge/GeO<sub>2</sub>/Titanate composite to address the limitations of conventional Ge-based anode materials, including volume expansion, particle aggregation, and unstable SEI formation during repeated charge–discharge cycles. By combining two-dimensional (2D) layered titanate nanosheets with Ge/GeO<sub>2</sub> nanoparticles, the composite achieves enhanced structural stability and outstanding electrochemical performance. The 2D titanate nanosheets effectively mitigate the volume expansion of Ge/GeO<sub>2</sub> nanoparticles, prevent particle aggregation, and maintain the long-term structural stability of the electrode while enhancing lithium-ion and electron transport pathways. Moreover, the thin amorphous GeO<sub>2</sub> layer on the Ge/GeO<sub>2</sub> nanoparticles suppresses excessive reactions with the electrolyte, promotes uniform and stable SEI formation, reduces irreversible capacity loss, and further contributes to the electrode's long-term stability. The Ge/GeO<sub>2</sub>/Titanate composite exhibits exceptional performance, retaining a high capacity of 925.8 mAh/g (∼94 % of the theoretical capacity) after 350 cycles at 0.1 A/g. It also achieves capacity retention rates of 88.3 % and 73.4 % after 1200 charge–discharge cycles at high current densities of 2.0 A/g and 5.0 A/g, respectively.</div></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"346 \",\"pages\":\"Article 125256\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459625000799\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625000799","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
本研究引入了一种新型的Ge/GeO2/钛酸盐复合材料,以解决传统Ge基阳极材料的局限性,包括在重复充放电循环中体积膨胀、颗粒聚集和不稳定的SEI形成。通过将二维(2D)层状钛酸盐纳米片与Ge/GeO2纳米颗粒结合,复合材料具有增强的结构稳定性和优异的电化学性能。2D钛酸盐纳米片有效地减缓了Ge/GeO2纳米颗粒的体积膨胀,防止了颗粒聚集,保持了电极的长期结构稳定性,同时增强了锂离子和电子的传递途径。此外,Ge/GeO2纳米颗粒上的薄无定形GeO2层抑制了与电解质的过度反应,促进了均匀稳定的SEI形成,减少了不可逆的容量损失,进一步有助于电极的长期稳定性。Ge/GeO2/钛酸盐复合材料表现出优异的性能,在0.1 a /g下循环350次后保持925.8 mAh/g的高容量(约94%的理论容量)。在2.0 A/g和5.0 A/g的高电流密度下,经过1200次充放电循环后,其容量保持率分别达到88.3%和73.4%。
A Ge/GeO2/Titanate nanocomposite with high energy density and enhanced long-term stability for lithium-ion batteries
This study introduces a novel Ge/GeO2/Titanate composite to address the limitations of conventional Ge-based anode materials, including volume expansion, particle aggregation, and unstable SEI formation during repeated charge–discharge cycles. By combining two-dimensional (2D) layered titanate nanosheets with Ge/GeO2 nanoparticles, the composite achieves enhanced structural stability and outstanding electrochemical performance. The 2D titanate nanosheets effectively mitigate the volume expansion of Ge/GeO2 nanoparticles, prevent particle aggregation, and maintain the long-term structural stability of the electrode while enhancing lithium-ion and electron transport pathways. Moreover, the thin amorphous GeO2 layer on the Ge/GeO2 nanoparticles suppresses excessive reactions with the electrolyte, promotes uniform and stable SEI formation, reduces irreversible capacity loss, and further contributes to the electrode's long-term stability. The Ge/GeO2/Titanate composite exhibits exceptional performance, retaining a high capacity of 925.8 mAh/g (∼94 % of the theoretical capacity) after 350 cycles at 0.1 A/g. It also achieves capacity retention rates of 88.3 % and 73.4 % after 1200 charge–discharge cycles at high current densities of 2.0 A/g and 5.0 A/g, respectively.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.