Mohammad Alipanahrostami, Connor Coolidge, Yuqi Wang, Wei Wang, Tiezheng Tong
{"title":"尽量减少使用全氟烷基和多氟烷基物质的织构抗湿表面","authors":"Mohammad Alipanahrostami, Connor Coolidge, Yuqi Wang, Wei Wang, Tiezheng Tong","doi":"10.1021/acs.est.4c08343","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) have been used as synthetic chemicals to create textured wetting-resistant surfaces, which have a broad range of applications including omniphobic membranes, self-cleaning textiles, and anticorrosion coatings. However, the high persistence, toxicity, and bioaccumulation potential of PFAS have led to rising public concerns and stringent regulations, especially after the U.S. Environmental Protection Agency (USEPA) announced legally enforceable maximum contamination levels for six PFAS species in April 2024. In this paper, we provide our perspective that the use of PFAS can be avoided in the fabrication of textured omniphobic and superomniphobic surfaces, which display high wetting resistance against not only high surface tension liquids but also more importantly low surface tension liquids. We first discuss the role of PFAS in the design of conventional wetting-resistant surfaces. We then discuss the state-of-the-art strategies for creating PFAS-free textured omniphobic and superomniphobic surfaces with high wetting resistance while elucidating the underlying mechanism. Further, we emphasize that PFAS are indeed not always needed for textured surfaces with a sufficiently high wetting resistance in specific environmental applications such as desalination and wastewater treatment. We envision that this paper will motivate the scientific community to rethink and revolutionize the design framework toward more sustainable wetting-resistant surfaces, thereby circumventing the use of PFAS and the consequent health and environmental risks.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"1 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing the Use of Per- and Polyfluoroalkyl Substances for Textured Wetting-Resistant Surfaces\",\"authors\":\"Mohammad Alipanahrostami, Connor Coolidge, Yuqi Wang, Wei Wang, Tiezheng Tong\",\"doi\":\"10.1021/acs.est.4c08343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per- and polyfluoroalkyl substances (PFAS) have been used as synthetic chemicals to create textured wetting-resistant surfaces, which have a broad range of applications including omniphobic membranes, self-cleaning textiles, and anticorrosion coatings. However, the high persistence, toxicity, and bioaccumulation potential of PFAS have led to rising public concerns and stringent regulations, especially after the U.S. Environmental Protection Agency (USEPA) announced legally enforceable maximum contamination levels for six PFAS species in April 2024. In this paper, we provide our perspective that the use of PFAS can be avoided in the fabrication of textured omniphobic and superomniphobic surfaces, which display high wetting resistance against not only high surface tension liquids but also more importantly low surface tension liquids. We first discuss the role of PFAS in the design of conventional wetting-resistant surfaces. We then discuss the state-of-the-art strategies for creating PFAS-free textured omniphobic and superomniphobic surfaces with high wetting resistance while elucidating the underlying mechanism. Further, we emphasize that PFAS are indeed not always needed for textured surfaces with a sufficiently high wetting resistance in specific environmental applications such as desalination and wastewater treatment. We envision that this paper will motivate the scientific community to rethink and revolutionize the design framework toward more sustainable wetting-resistant surfaces, thereby circumventing the use of PFAS and the consequent health and environmental risks.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c08343\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08343","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Minimizing the Use of Per- and Polyfluoroalkyl Substances for Textured Wetting-Resistant Surfaces
Per- and polyfluoroalkyl substances (PFAS) have been used as synthetic chemicals to create textured wetting-resistant surfaces, which have a broad range of applications including omniphobic membranes, self-cleaning textiles, and anticorrosion coatings. However, the high persistence, toxicity, and bioaccumulation potential of PFAS have led to rising public concerns and stringent regulations, especially after the U.S. Environmental Protection Agency (USEPA) announced legally enforceable maximum contamination levels for six PFAS species in April 2024. In this paper, we provide our perspective that the use of PFAS can be avoided in the fabrication of textured omniphobic and superomniphobic surfaces, which display high wetting resistance against not only high surface tension liquids but also more importantly low surface tension liquids. We first discuss the role of PFAS in the design of conventional wetting-resistant surfaces. We then discuss the state-of-the-art strategies for creating PFAS-free textured omniphobic and superomniphobic surfaces with high wetting resistance while elucidating the underlying mechanism. Further, we emphasize that PFAS are indeed not always needed for textured surfaces with a sufficiently high wetting resistance in specific environmental applications such as desalination and wastewater treatment. We envision that this paper will motivate the scientific community to rethink and revolutionize the design framework toward more sustainable wetting-resistant surfaces, thereby circumventing the use of PFAS and the consequent health and environmental risks.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.