Sten V. Lambeets, Naseeha Cardwell, Isaac Onyango, Mark G. Wirth, Eric Vo, Yong Wang, Pierre Gaspard, Cornelius F. Ivory, Daniel E Perea, Thierry Visart de Bocarmé, Jean-Sabin McEwen
{"title":"通过环境原子探针阐明电场在铁氧化过程中的作用","authors":"Sten V. Lambeets, Naseeha Cardwell, Isaac Onyango, Mark G. Wirth, Eric Vo, Yong Wang, Pierre Gaspard, Cornelius F. Ivory, Daniel E Perea, Thierry Visart de Bocarmé, Jean-Sabin McEwen","doi":"10.1002/anie.202423434","DOIUrl":null,"url":null,"abstract":"We quantify the effects of intensely applied electric fields on the Fe oxidation mechanism. The specimen are pristine Fe single crystals exposing a variety of surface structures identified by field ion microscopy. These crystals are simultaneously exposed to low pressures of pure oxygen gas, on the order of 10‐7 mbar, while applying intense electric fields on their surface of several tens of volts per nanometer. The local composition of the different surface structures is probed directly and in real time using an Environmental Atom Probe and successfully compared with first principles‐based models. We found that rough Fe{244} and Fe{112} facets are more reactive toward oxygen than compact Fe{024} and Fe{011} facets. Results demonstrate that the influence of an electric field on the oxidation kinetics depends on the timescales that are involved as the system evolves toward equilibrium. The initial oxidation kinetics show that strong increases in electric fields facilitate the formation of an oxide. However, as one approaches equilibrium, high field values mitigate this formation. Ultimately, this study elucidates how high externally applied electric fields can be utilized to dynamically exploit reaction dynamics at the nanoscale towards desired products in a catalytic reaction at mild reaction conditions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"80 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Role of Electric Fields in Fe Oxidation via an Environmental Atom Probe\",\"authors\":\"Sten V. Lambeets, Naseeha Cardwell, Isaac Onyango, Mark G. Wirth, Eric Vo, Yong Wang, Pierre Gaspard, Cornelius F. Ivory, Daniel E Perea, Thierry Visart de Bocarmé, Jean-Sabin McEwen\",\"doi\":\"10.1002/anie.202423434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We quantify the effects of intensely applied electric fields on the Fe oxidation mechanism. The specimen are pristine Fe single crystals exposing a variety of surface structures identified by field ion microscopy. These crystals are simultaneously exposed to low pressures of pure oxygen gas, on the order of 10‐7 mbar, while applying intense electric fields on their surface of several tens of volts per nanometer. The local composition of the different surface structures is probed directly and in real time using an Environmental Atom Probe and successfully compared with first principles‐based models. We found that rough Fe{244} and Fe{112} facets are more reactive toward oxygen than compact Fe{024} and Fe{011} facets. Results demonstrate that the influence of an electric field on the oxidation kinetics depends on the timescales that are involved as the system evolves toward equilibrium. The initial oxidation kinetics show that strong increases in electric fields facilitate the formation of an oxide. However, as one approaches equilibrium, high field values mitigate this formation. Ultimately, this study elucidates how high externally applied electric fields can be utilized to dynamically exploit reaction dynamics at the nanoscale towards desired products in a catalytic reaction at mild reaction conditions.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202423434\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423434","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Elucidating the Role of Electric Fields in Fe Oxidation via an Environmental Atom Probe
We quantify the effects of intensely applied electric fields on the Fe oxidation mechanism. The specimen are pristine Fe single crystals exposing a variety of surface structures identified by field ion microscopy. These crystals are simultaneously exposed to low pressures of pure oxygen gas, on the order of 10‐7 mbar, while applying intense electric fields on their surface of several tens of volts per nanometer. The local composition of the different surface structures is probed directly and in real time using an Environmental Atom Probe and successfully compared with first principles‐based models. We found that rough Fe{244} and Fe{112} facets are more reactive toward oxygen than compact Fe{024} and Fe{011} facets. Results demonstrate that the influence of an electric field on the oxidation kinetics depends on the timescales that are involved as the system evolves toward equilibrium. The initial oxidation kinetics show that strong increases in electric fields facilitate the formation of an oxide. However, as one approaches equilibrium, high field values mitigate this formation. Ultimately, this study elucidates how high externally applied electric fields can be utilized to dynamically exploit reaction dynamics at the nanoscale towards desired products in a catalytic reaction at mild reaction conditions.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.