组织工程和局部药物递送应用的4D打印化学刺激反应水凝胶-第2部分。

Expert opinion on drug delivery Pub Date : 2025-04-01 Epub Date: 2025-02-19 DOI:10.1080/17425247.2025.2466768
Alireza Sadraei, Seyed Morteza Naghib, Navid Rabiee
{"title":"组织工程和局部药物递送应用的4D打印化学刺激反应水凝胶-第2部分。","authors":"Alireza Sadraei, Seyed Morteza Naghib, Navid Rabiee","doi":"10.1080/17425247.2025.2466768","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications.</p><p><strong>Areas covered: </strong>This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems.</p><p><strong>Expert opinion: </strong>The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"491-510"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2.\",\"authors\":\"Alireza Sadraei, Seyed Morteza Naghib, Navid Rabiee\",\"doi\":\"10.1080/17425247.2025.2466768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications.</p><p><strong>Areas covered: </strong>This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems.</p><p><strong>Expert opinion: </strong>The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"491-510\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2466768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2466768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

4D打印与化学刺激反应水凝胶的结合代表了生物医学工程领域的重大进步,有效地克服了与传统静态3d打印结构相关的限制。通过将时间作为第四个维度的整合,4D打印促进了动态和适应性结构的发展,这些结构可以对周围环境的化学变化做出反应。这一创新为复杂的组织工程和靶向药物输送应用提供了可观的前景。涵盖领域:本综述研究了化学刺激响应水凝胶在4D打印背景下的功能,强调了它们在暴露于特定化学刺激时进行调节转化的独特能力。对当代研究的深入研究强调了这些水凝胶与其周围环境之间的协作动力学,特别关注它们在组织再生仿生支架中的应用和智能药物输送系统的进步。专家意见:将4D打印技术与化学反应性水凝胶相结合,为组织工程和靶向药物输送的进步提供了非凡的前景,促进了个性化和适应性医疗解决方案的发展。尽管潜力很大,但必须解决诸如材料优化、生物相容性和对刺激反应行为的精确控制等挑战,以促进临床转化和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2.

Introduction: The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications.

Areas covered: This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems.

Expert opinion: The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信